
Multi-Armed Bandit

January 10, 2020

The European Commission’s support for the production of this publication does not
constitute an endorsement of the contents, which reflect the views only of the authors,
and the Commission cannot be held responsible for any use which may be made of
the information contained therein.

1

1 Multi-Armed Bandit

Consider an agent (a decision maker) faced with a number of slot machines (one-armed bandits).
Each time the decision maker decides to play on some slot machine (each time he/she pulls the
corresponding leaver), he/she receives certain reward, or has to pay some penalty. The actual
amount received or payed is a stochastic quantity, decided by chance, depending also on the selected
slot machine, since not all “bandits” are alike, and some are more generous than others. However,
since all slot machines initially look alike to the decision make, the only way to decide which
one is more favorable is to experiment by pulling different leavers. The goal is to maximize total
accumulated reward received over a long sequence of repeated plays.

2

1.1 Preparataion

[1]: # Import and initialize plotting library
import StatsPlots
import StatsPlots: @df, plot, plot!
StatsPlots.Plots.gr();

[2]: # Import and initialize random number generators
import Random, Distributions
Random.seed!(round(Int64, time() * 1000));

[3]: # Import and initialize data frames
import DataFrames
import DataFrames: DataFrame

1.2 An Approach to Simulating Automata

Let us consider a decision making problem in more detail. The decision maker can be seen as an
automaton which advances its internal state based on rewards received from the environment. At
each decision time instant, the agent makes a decision, it takes an action based on its internal state.
Likewise, the environment itself is an automaton, which evolves driven by the actions received from
the decision maker, and rewards the decision maker accordingly.

Automaton is fully specified by a function mapping a pair of its current state and externally given
input (x, u) to the pair (x_, y) of the consecutive state and output. Such function is termed state
transition function.

Considering that the state is to be considered internal to an agent, it is possible to consider its
input-output form, in which the state is hidden. The actual implementation returns also the state,
but only for debugging and logging purposes. The exposed state is actually a deep copy of the agent
state: it is completely appropriate to manipulate the returned state, the automaton itself will not
be affected.

Consequently, if performance requires, the state transition function need not be pure and may
mutate the state in-place. The code will run safely.

[4]: """
Transforms state-transition-function `stf` into a dynamic system (automaton)
in input-output form, in which the state is evolved internaly starting from
the given initial value `x0`.

The returned system is a function of the form `u -> (y, x)`, where `u` is the␣
↪→system

input, while `y` and `x` are the corresponding output and the following state.
"""
function toInOut(stf, x0; exposeState=false)

Array is used only to allow the inner function

3

to modify the state.
x = [x0]
u ->
begin

x_, y = stf(x[1], u)
x[1] = x_
Deep copy is used because the internal state is exposed
and this is unsafe.
if exposeState

return (y, deepcopy(x_))
else

return y
end

end
end;

Let us now build a generic function used to simulate any automaton. Function evolution is
essentially an iterator, which can be used to yield output one by one.

[5]: function evolution(automaton, input)
(automaton(u) for u in input)

end

[5]: evolution (generic function with 1 method)

1.2.1 Example 1: Simple integrator

Let us test the above framework using a simple example, unrelated to the bandit problem: consider
a simple integrator.

[6]: integrator = (x, u) -> (x+u, x+u);

Unit step response of the integrator will be simulated. We will feed the integrator with constant
stream of 1, and we will expect the output to grow as unit ramp.

[7]: integrator! = toInOut(integrator, 0)
step_response = evolution(integrator!, (1 for _ in 1:10));
output = [y for y in step_response];

[8]: plot(output, linewidth=2, label="output")

[8]:

4

2 4 6 8 10

2

4

6

8

10

output

1.2.2 Agent-Environment Interaction

Interaction between the agent and its environment can also be described in
generic terms. We assume that the agent is invoked first. That its output
(action) is fed into the environment, which produces the appropriate reward, and
feeds it back to the agent. This implies that the reward of the first iteration
is not well defined, and that the proper implementation of agent need to take
this into consideration.

Note, however, that the topology of the interaction is quite generic, and
deserves implementation of its own.

[9]: function sequentialLoopStf(stf1, stf2)
((x1, x2, u1), u) ->
begin

x1_, y1 = stf1(x1, u1)
x2_, y2 = stf2(x2, y1)
return ((x1_, x2_, y2), (y1, y2))

end
end;

First note that that compound system is completely autonomous: the input is
completely disregarded. Note also that the state of the compound system is

5

three-fold: it contains of the state of the first system, the state of the second
systems, and of the output of the second system from the last iteration. This
value will be used as the input to the first system in the following iteration.

[10]: """
Simulates `iters_count` successive iterations of interaction between an agent␣
↪→and

its environment. Both agent and the environment are assumed to be in the␣
↪→input-output

form (hense `!` after argument names: each iteration modifies the internal␣
↪→state of both).

The return value is a tuples containing arrays of: actions, rewards, agent's␣
↪→states and

environment's states.
"""
function interact(agent, environment, x0agent, x0environment, iters_cnt,␣
↪→init_input)

x0 = (x0agent, x0environment, init_input)
loop = toInOut(sequentialLoopStf(agent, environment), x0; exposeState=true)
results = evolution(loop, nothing for _ in 1:iters_cnt)
rewards = []
actions = []
agent_states = []
environment_states = []
for ((action, reward), (x_agent, x_env, _)) in results

push!(rewards, reward)
push!(actions, action)
push!(agent_states, x_agent)
push!(environment_states, x_env)

end
return actions, rewards, agent_states, environment_states

end;

Note also that due to deep copying in the implementation of toInOut the automaton
need no be implemented as a pure function! It can actually mutate state. The
state is captured within toInOut and only its deep copy is exposed outside (for
logging and debugging).

Since the state is not needed ``in production'', being the internal quantity of
agents, it is possible to make a version of the toInOut function which would not
expose state at all. The corresponding modified interact function would also not
expose state evolution of neither state agent nor the environment.

6

1.2.3 Example 2: Simple integrator in closed loop

Consider a simple integrating agent, whose output at any time instant is just
the sum of all rewards received in the past. Let us embed this agent in a simple
indifferent environment which rewards all actions with the same amount (which we
set to 1).

[11]: environment = (x, u) -> (x, 1.0);
agent = (x, u) -> (x+u, x+u);

[12]: actions, rewards, integrator_states, environment_states = interact(agent,␣
↪→environment, 0, 0, 100, 0);

[13]: plot(actions, label="actions", linewidth=2)
plot!(rewards, label="rewards", linewidth=2)

[13]:

0 25 50 75 100

0

25

50

75

100

actions
rewards

1.3 Multi-Armed Bandits

1.3.1 Problem Statement

Let us model each ``bandit'' by the corresponding reward probability
distribution. Without loss of generality, let us assume that the reward given by
each bandit is normally distributed, with given mean and variance different for

7

each agent. Means and variances of these distributions will be selected randomly,
uniformly within appropriate ranges: all means will be selected between 0 and 1,
while all standard deviations will be selected in range between 0 and 0.25.

[46]: function generate_distributions(bandits_no)
means = [rand(Distributions.Uniform(0, 1)) for _ in 1:bandits_no]
stds = [rand(Distributions.Uniform(0, 0.25)) for _ in 1:bandits_no]
dist = [Distributions.Normal(�, �) for (�, �) in zip(means, stds)]
return dist, means, stds

end;

[47]: distributions, means, stds = generate_distributions(10);

Let us now sample and visualize the generated distributions.

[48]: function sample_distributions(distributions)
samples = DataFrames.DataFrame()
for (index, d) in enumerate(distributions)

name = Symbol("Distribution $index")
samples[name] = rand(d, 1000)

end
return samples

end;

[49]: samples = sample_distributions(distributions)
@df samples StatsPlots.violin(cols())

[49]:

2 4 6 8 10

-0.5

0.0

0.5

1.0

1.5

Distribution 1
Distribution 2
Distribution 3
Distribution 4
Distribution 5
Distribution 6
Distribution 7
Distribution 8
Distribution 9
Distribution 10

8

Let us now define the environment. In multi-armed bandit problem, the environment
is stateless: past actions of the decision makers and past rewards do not affect
the current reward. The current reward is a stochastic quantity, but it depends
solely on the last action of the agent.

[50]: function bandits(distributions)
(state, action) ->
begin

reward = 0
if action > 0 && action <= length(distributions)

reward = rand(distributions[action])
end
return state, reward

end
end;

1.3.2 Solution: ε-greedy agent

[51]: function �Greedy(�, bandits_no)
dist = Distributions.Uniform(0, 1)
inner = (state, reward) ->
begin

lastAction, accumulators, counters = state
if !(lastAction == 0)

accumulators[lastAction] += reward
counters[lastAction] += 1

end
We do not need to take extra precautions here, because
Julia handles NaN, Inf, etc. gracefully.
if rand(dist) < �

action = argmin(counters)
else

action = argmax([a/c for (a, c) in zip(accumulators, counters)])
end
return ((action, accumulators, counters), action)

end
return inner, (0, [0.0 for i in 1:bandits_no], [0 for i in 1:bandits_no])

end

[51]: �Greedy (generic function with 1 method)

[52]: bandits_stf = bandits(distributions)
�Greedy_stf, �Greedy_x0 = �Greedy(0.05, 10);

9

actions, rewards, agent_states, _ = interact(�Greedy_stf, bandits_stf,␣
↪→�Greedy_x0, 0, 100, 0.0);

[53]: StatsPlots.histogram(actions, label="actions")

[53]:

2 4 6 8 10

0

20

40

60

80
actions

[54]: plot(actions, label="actions", linewidth=2)

[54]:

10

0 25 50 75 100

2

4

6

8

10

actions

[55]: lastState = agent_states[end]
estimates = [a/c for (a, c) in zip(lastState[2], lastState[3])];

[56]: plot(estimates, seriestype=:scatter, label="estimates")
plot!(means, seriestype=:scatter, markershape = :hexagon, label="actual")

[56]:

11

2 4 6 8 10

0.00

0.25

0.50

0.75
estimates
actual

[]:

12

	Multi-Armed Bandit
	Preparataion
	An Approach to Simulating Automata
	Example 1: Simple integrator
	Agent-Environment Interaction
	Example 2: Simple integrator in closed loop

	Multi-Armed Bandits
	Problem Statement
	Solution: \varepsilon-greedy agent

