Third laboratory exercise

1. assignment

Produce a program that requires the user to input a four digit integer using a user dialogue. If the input value does not satisfy the proposed attributes display an adequate message and request the number to be input again. If the input valueis satisfactory display a message to the user and finish the program.
Hint: try using the In Range and Coerce function from the pallette.
2. assignment

Generate and display a random ten digit number and then check if it is a prime number (divisible only by itself and 1). The algorithm to check this feature includes dividing the generated number N with all of the integer values between 2 and $V N$ and looking for a 0 remainder. If there is no number that qualifies the number N is a prime number. If there are numbers that you can divide N with and end up with a 0 remainder than count them and display their total count using a thermometer. Measure the time it takes to perform a single run of the calculation and display the value on the Front panel. Advise the user of the result (prime or non prime number) using a dialogue.
3. assignment

Produce a program which divides the number into thousands, hundreds, tens and ones and than checks if the sum of all the components is a prime number. The front panel should include a LED indicatorwhich lights up every time an integer divider is found. In order for this to be perceptible the loop iteration delay should be around 500 ms . When the program is finished the front panel should display the number of integer divisors and notify the user if the number is a prime or not.
Hint: the Quotient and Remainder function could come in useful.

