

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

La
b

V
IE

W

Instructional script for
introductory laboratory
exercises in software designed
instrumentation

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

Table of contents
1. Introduction .. 4

2. Creating a new Virtual Instrument ... 5

Example 1 ... 6

Solution ... 6

Context help ... 9

Useful keyboard shortcuts in the LabVIEW environment .. 9

Assignment 1 .. 10

3. Controls and indicators .. 12

Data types ... 12

4. Operators ... 16

Arithmetic operators .. 16

Example 1. .. 17

Solution ... 17

Logical operators .. 19

Example 2 ... 20

Solution ... 20

Comparison operators .. 22

Example 3. .. 24

Assignment 2 .. 25

5. Flow control .. 26

Case Structure .. 26

Assignment 3 .. 27

6. Loops .. 29

For loop ... 29

While loop .. 30

Assignment 4 .. 30

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

Assignment 5 .. 31

7. Data Structures ... 32

Arrays .. 32

Array palette tools .. 34

Loops and arrays (auto - indexing) ... 36

Clusters ... 37

String functions ... 39

Assignment 6 .. 40

Assignment 7 .. 40

8. Use of acquisition devices (NI MyDAQ) ... 42

NI ELVISmx Instrument Launcher ... 42

Data acquisition and MyDAQ ... 43

Assignment 8 .. 45

9. Simulating an acquisition device .. 45

10. Conclusion .. 48

List of figures .. 50

List of tables .. 50

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

1. Introduction

LabVIEW is a development environment that enables easier data acquisition and

analysis due to its graphical programing capabilities and variety of compatible acquisition

hardware.

Some of the key features of the LabVIEW environment are:

 programing of Virtual instruments

 data acquisition using various peripheral devices

 data analysis (filtering, storing, transforming, etc.)

 communication with other systems

 instrument and device control

Programs made in LabVIEW environment are called Virtual Instruments (VI). Their

purpose is to simulate a real life measurement device. Virtual Instrument development

includes making two main parts:

1. Front panel – intended for designing a graphical user interface – part of the system

that the users interact with.

2. Block diagram – adds functionality to the VI. It consists of graphical programing

elements like functions, operators, wires, loops, etc.

This document gives an insight into fundamentals of graphical programing and data

acquisition using LabVIEW environment. In the second chapter basics of creating and running

a VI are explained. Third chapter covers the data types available in LabVIEW. Algorithm flow

controls like loops and case structures are explained in the fourth chapter, while the basic data

structures, like arrays and clusters are covered in the fifth chapter. Sixth chapter deals with

basics of data acquisition. Seventh chapter intends to familiarize the reader to the ways of

acquisition hardware simulation. The document is concluded in the final chapter.

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

2. Creating a new Virtual Instrument

Starting LabVIEW environment a main window appears where the user can choose

wheather to create a new project, create a single VI, or open existing project or a VI. Creating

a project is useful in cases where there are going to be a lot of dependencies – like multiple

dependant VI-s and resurces (for example – files). Wheather the user created a project or not

a new VI can be created by clicking in the menu bar: File->New VI or using CTRL + N keyboard

shortcut.

By creating a new VI two windows appear. One window is called the Front panel and

the other is called Block diagram. If user created a blank VI than both of the widows are empty.

New elements on both windows are added from the corresponding palette. Front panel

elements (buttons, switches, numeric indicators, etc.) are placed from the Controls palette –

it appears when the front panel is clicked (if not, then it can be opened by clicking in the menu

bar View->Controls palette). Block diagram elements are placed from the functions palette.

There is one more palette called Tools palette that has all the basic tools available (wire

connection tool, operate value, etc.), but, since the tools are by default automatically selected

depending on the mouse position, most of the time it can be avoided.

Elements in the palettes are organized in the meaningful groups or sub palettes. For

example – if user wants to add a LED indicator to the front panel, it can be found in the Boolean

sub palette (Modern -> Boolean -> Round LED).

Palettes appearance can be modified by clicking the Customize option on the top of

the palette and choosing one of the possible visualizations.

User can find the wanted element by navigating through the palette or by clicking the

search field on the palette and typing the keyword that corresponds to the wanted element.

By placing an element on the front panel a corresponding block appears on the block

diagram. That block is used to retrieve a value from the front panel element or to place a value

into the front panel element. If the block diagram retrieves value from the front panel

element, then the element is called a Control. If the block diagram places a value in the front

panel element then it is called an indicator.

When all the front elements are placed and arranged in the wanted manner the user

can switch to adding the functionality to the VI. Functionality is added by connecting blocks,

operators, functions, sub-VIs with wires accomplishing adequate data flow.

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

Example 1

Create a Virtual Instrument with a front panel that consists of two arbitrary switch

controls, a LED indicator and button for program termination. The virtual instrument works in

such a way that the LED indicator is on (light up) if and only if both switches are on.

Solution

Designing the front panel

Programmer can locate the switch by navigating the palette categories or by using the

search option. One of the possibilities is to select the element named Vertical Toggle Switch

under the Modern category and the Boolean sub - category. After selection, the element

should be placed on the front panel. One can repeat the process for the second switch. After

adding the switch, programmer needs to add the LED indicator. It is possible to enter “led”

keyword in the search option or to find in in the same category as the switches. Program will

also require one button that will serve as a program termination control. The button can be

found within the same category of elements. The names of individual elements can be altered

by double-clicking on the label above the element. The items should to be positioned so that

they are neatly arranged.

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

Figure 1 Front panel for the Example 1.

Adding the functionality

By selecting the block diagram window (or pressing the ctrl + E key while the front panel

window is active) the functionality implementation of the virtual instrument can start.

Within the block diagram there should be 4 blocks present that correspond to the added front

panel elements (two switches, button and LED indicator). When defining the functionality,

inputs and outputs of the mentioned elements will be used. In order to implement the desired

functionality, it is possible to use a logic operator AND. This element is located within the

Programming category -> Boolean -> AND.

The program should be executed until the button on the front panel is pressed. Such

functionality will result by adding a loop, for example – a while loop. While loop can be found

within the Programming category -> Structures sub category. After adding the loop structure

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

to the block diagram, it is only necessary to wire the elements in a correct way. It is necessary

to ensure that all elements are within the while loop structure.

As mentioned above, the task says the program should end by pressing the button. Such

functionality can be achieved by connecting the button output to the input of the Loop

Condition element that defines when the loop is stopped. The elements inside the loop need

to be connected as follows:

● output of the first switch to one input of the AND operator.

● Output the second switch to the other input of the AND operator.

● output of the AND operator to the LED indicator input.

The block diagram should look like the one presented by the Figure 2.

Figure 2 Block diagram of the Example 1.-

Running the program

Execution of the VI is controlled by the Execution buttons shown in the Figure 3 that

are placed on, both, the front panel and block diagram. Starting of the VI is done by pressing

the Run button located on the toolbar. Stopping the program can be performed by pressing

the Abort Execution button or when all the operations on the block diagram are done. Pressing

the Run button program executes once. If the user is required to run the program continuously

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

until the Abort Execution key is pressed one can use the Run Continuously button. Run

Continuously works as if the entire block diagram was placed inside the infinite loop. Loops

will be explained in the later chapter.

Figure 3 Execution controls

Context help

Context help helps the programmer to work with the LabVIEW environment. It can be

turned on by clicking on the icon at the top right corner of the application window.

When the Context help option is turned on, it is enough to move the mouse over the

icon or a block and the help is automatically displayed within a special window. This window

contains the basic functionality explanation of the element over which the mouse pointer is

set. However, for more detailed explanation, programmer can click the link inside that window

called Detailed help.

Useful keyboard shortcuts in the LabVIEW environment

The Table 1 shown below shows a preview of some of the keyboard shortcuts that are

commonly used in LabVIEW environment.

Table 1 Useful keyboard shortcuts

KEYBOARD SHORTCUT FUNCTION

CTRL + R Launch VI.

CTRL + . Stop the VI.

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

CTRL + B Erases all unconnected wires.

CTRL + Z Undo.

CTRL +SHIFT + Z Redo.

CTRL + S Saving VI.

CTRL + SHIFT + S Saving all open VIs.

CTRL + Q Exit LabVIEW Tool.

CTRL + E Change focus between the block diagram and
the front panel.

CTRL + T Set the front panel window and block diagram
window next to each other.

SHIFT + CLICK Select multiple objects on the block diagram or
the front panel.

CTRL + HOLD LEFT MOUSE CLICK AND
MOVE

Creating a blank space on the block diagram or
on the front panel.

CTRL + I Changing VI (icon) properties

Assignment 1

Create a virtual instrument using 5 switches that represent binary digits of an integer

number. The virtual instrument should turn on the LED indicator only if the decimal value of

the binary number represented by the switches is 21.

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

Figure 4 Possible front panel for the Assignment 1 VI.

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

3. Controls and indicators

Controls allow data entry in the LabVIEW program (Virtual Instrument - VI), while the

indicators allow data to be displayed on the front panel of the VI. Each indicator can be

changed by right-clicking on the element and selecting Change to control and vice versa.

Data types

LabVIEW supports multiple data types:

• Numerical data types - integeres, floating point, complex, etc.

• text (strings)

• boolean - logical

• arbitrary – enums, clusters, variant

Wires and elements intended for the string data type are colored in pink, those

intended for integers are blue, those intended for floating point numbers are orange , for

boolean values in green and for example those intended for values representing time are

brown.

Numerical data types

Within the LabVIEW tool, numeric values can be stored or displayed as floating-point

numbers, fixed-point numbers, integers, unsigned integers and complex.

Each type of data can save a different type of numeric values and different ranges of

these values. The value range most often depends on the number of bits that this data type

uses and the way the values is converted to the binary stream. This greatly contributes to the

efficient utilization of memory that is available to the program. Within the Table 2 shown

below, there are types of data with the corresponding block appearance, number of bits,

minimum and maximum values that this type of data can store.

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

Table 2 LabVIEW basic data types

Terminal Data type Number
of bits Minimum value Maximum value

 Single precision 32
Minimum positive: 1.40e–45
Minimum negative: –1.40e–45

Maximum positive: 3.40e+38
Maximum negative: –3.40e+38

Double precision

64
Minimum positive: 4.94e–324
Minimum negative: –4.94e–324

Maximum positive: 1.79e+308
Maximum negative: –1.79e+308

 Extended precision 128
Minimum positive: 6.48e–4966
Minimum negative: –6.48e–4966

Maximum positive: 1.19e+4932
Maximum negative: –1.19e+4932

Complex number – single
precision 64 Same as single precision for imaginary

and real part.
Same as single precision for
imaginary and real part.

Complex number –
double precision 128 Same as double precision for imaginary

and real part.
Same as double precision for
imaginary and real part.

Complex number –
extended precision 256 Same as extended precision for

imaginary and real part.
Same as extended precision for
imaginary and real part.

 Fixed – point 64 ovisi o korisniku

 Byte signed integer 8 –128 127

 Signed integer - riječ 16 –32,768 32,767

 Long signed integer 32 –2,147,483,648 2,147,483,647

 Quad signed integer 64 –1e19 1e19

 Byte unsigned integer 8 0 255

 Word unsigned integer 16 0 65,535

 Long unsigned integer 32 0 4,294,967,295

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

 Quad unsigned integer 64 0 2e19

 128-bit time 128 Minimalno vrijeme: 01/01/1600
00:00:00

UTC maksimalno vrijeme:
01/01/3001 00:00:00 UTC

After adding an numeric indicator or a numeric control (eg.: Controls -> Modern ->

Numeric -> Numeric Indicator), the data type that will be stored / displayed by this block can

be changed by right-clicking on the icon and selecting the Representation option.

Things like the range of numbers that are allowed to be entered in the numeric control

can be set by right-clicking on the control and selecting the Properties option. Within this

option, programmer can, also: adjust the appearance of the element, minimum and maximum

allowed value for controls, display format for indicators, add a documentation information for

the element, etc. Setting a minimum or maximum possible input value on a control can

prevent a user from entering a higher or lower value than that allowed by the program – which

means that programmer does not have to implement the validation functionality.

Casting of data types

Sometimes you need to convert some data type to another data type. For conversion

operations from one data type to another LabVIEW has embedded conversion blocks or the

conversion is done automatically. Conversion blocks from one type of data to the other are

located within the Functions palette: Programming -> Numeric -> Conversion. Numeric data

types can be automatically converted from one to another if output terminal of one type is

connected to input terminal of another data type.

String Data Type

A String consist of a stream of characters (often ASCII, or Unicode). String controls and

indicators are used to enter, or display, textual data. The indicators and controls used with the

string data type are contained within the control palette under the category Modern (Silver

or Classic) -> String & Path. String operations and conversion from numeric types to strings

can be done using blocks within the Functions palette under the Programming -> Strings

group.

Boolean data type

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

Boolean data type can only take on two possible values true or false. In LabVIEW any

control or indicator that can be in two possible states is considered of boolean data type, like

various switches and buttons. Boolean indicators and controls are located in the Controls

palette within the Modern (Classic or Silver) -> Boolean group.

.

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

4. Operators

Operators are used to carry out various arithmetic and logic operations on data. Within

this document, operators are divided into three basic groups inspired by the groups within the

LabVIEW tool itself.

Arithmetic operators

Arithmetic operators serve to perform a series of arithmetic operations over numerical

values. Since they are working on numeric values, they are located within the Numeric section

under the Programming group as part of the Functions palette.

The basic arithmetic operators and their functionality are given in the Table 3 shown

below.

Table 3 Arithmetic operators and their description

Operator Functionality

adding / subtracting of input

Multiplication / division of Input Values.

Calculating the integer remainder of division, and the result
of an integer division.

Increase value for 1 and decrease value for 1.

Root / square of the input value.

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

Changing the sign of the input value.

Calculation of the absolute value of the input value.

Performs arbitrary arithmetic operation over multiple input
parameters. It is possible to perform the following
operations: addition, multiplication, logical "AND" and "OR"
and “XOR". Selecting the operation is done by right-clicking
on the block and selecting Change mode.

Example 1.

Create a virtual instrument that takes on two input parameters a and b - that the user

enters. VI should calculate the solution for the following equation::

𝑦 = 2𝑎2 +
𝑏
2
− 6

Solution

Designing the front panel

On the front panel programmer needs to add two numeric controls that will allow the

user to input parameters a and b. Location of elements: Controls palette -> Silver -> Numeric

-> Numeric Control. Also, a numeric indicator (Silver -> Numeric -> Numeric Indicator) is

required to display the equation solution.

Possible Front Panel Layout is shown in the Figure :

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

Figure 5 Front panel layout for the Example 1

Adding the functionality

After adding the elements of the front panel, the corresponding terminals appear on

the block diagram. Subsequently, adequate functionality needs to be implemented.

In order to achieve the functionality, set by the equation, the input parameter "a" must

be squared and multiplied by 2. The easiest way to add the constant 2 is by right-clicking on

the input terminal of the multiplication block and by selecting the Create constant option. The

value of the input parameter "b" is to be divided by 2 and the solution added to the summing

operator with the previous result. The value obtained must be reduced by 6 and connected to

the numeric indicator so that the solution can be displayed on the front panel.

Block diagram of the Example 1 is shown in the Figure 6.

Figure 6 Block diagram for the Example 1

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

Logical operators

Logical operators perform operations over logical values. There are only two logical

values:

● true (true, YES, 1)

● false (false, NO, 0)

Logical operators, depending on the logical values at the input terminals, produce

logical values on the output.

The basic logical operators are listed in the Table 4 shown below and can be found on

the Functions palettes: Programming -> Boolean.

Table 4 Logical operators and their description

Operator Functionality

Otuput is true only if both inputs are true.

x y output

F F F

F T F

T F F

T T T

Output is true if at least one input is true.

x y output

F F F

F T T

T F T

T T T

Negates the input.

x output

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

F T

T F

True is on the output if the same logical values are on the input.

x y output

F F F

F T T

T F T

T T F

Example 2

Implement a virtual instrument that turns on the LED indicator on the front panel

based on the state of 4 switches also on the front panel. The LED indicator light up only if the

following switches are ON:

 1, 3 and 4

 or

 1, 2, and 3.

Solution

Designing the front panel

Possible front panel layout is shown in the Figure 7. Most of the elements can be found

in the Modern -> Boolean sub palette.

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

Figure 7 Possible front panel for the Example 2

Adding the functionality

The solution shown in the Figure 8 is using a block called "Compound arithmetic" that

has the option to perform logical "I", "OR", "XOR" over multiple inputs.

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

Figure 8 Block diagram for the Example 2

Comparison operators

Comparison operators are operators that allow verification of whether input

values are greater, smaller or equal to some other values. The result of the comparison

operator is usually the logical value (true or false) except for the ternary operator

(Select). The basic comparison operators are listed in the Table 5.

Table 5 Comparison operators

Operator Functionality

Checks whether inputs are equal / different.

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

Checks whether the value of the upper input is
higher / lower than the value at the bottom input.

Checks whether the upper input is greater than or
equal to / less than or equal to the value at the
bottom input.

Checks whether the input is equal to 0. Note: there
are blocks for checking the input signal:
- different from zero
- smaller / smaller or equal to zero
-higher / greater or equal to zero

Select operator.
Equivalent to the ternary operator of other
programming languages. Based on the boolean
value “s” at the entrance to the output, the value of
the output t or f is transmitted. If true to output is
forwarded to the input at t, otherwise the output is
sent to the input f.

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

Example 3.

Virtual Instrument needs to be created which will sum up two numbers (A and B) if the

switch on the front panel is turned on (true state) and subtract two input numbers if the switch

is turned off (false state). If the solution is greater than 0 turn on the LED indicator on the front

panel.

Designing the front panel

In order to provide the user with the ability to enter two numbers, two numeric

controls (A and B) must be placed on the front panel. To select a operation, programer needs

to position one switch on the front panel. Also, it is necessary to place one LED indicator that

will indicate whether the solution is positive or not.

Figure 9 Possible front panel for the Example 3

Adding the functionality

Wanted functionality can be accomplished using the Select operator. Select operator

will send to its output the sum or the subtraction of values A and B based on the boolean value

the switch sends on its output terminal.

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

Figure 10 Block diagram for the Example 3

Assignment 2

Create a virtual instrument that takes on 6 input parameters that represent the vertices of a

triangle in the Cartesian coordinate system (x1, y1, x2, y2, x3, y3). VI should calculate the

distances between each of the vertices and show the solutions in adequate indicators ont

the front panel.

Vi should also calculate the circumference of the triangle. If the circumference is smaller

than 10 then a LED indicator on the front panel should light up.

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

5. Flow control

Programing in a certain textual programing language like C, C++, Java or C#, or using a

graphical oriented environment, like LabVIEW, can be described as implementing one or

several algorithms. An algorithm is a defined series of instructions, which, carried out, bring

about a certain goal or result. The instructions often need to take on different modes

depending on some input or calculated information, or need to be repeated any number of

times. This modifies the sequence or the flow of the instructional set applied in a certain case.

LabVIEW makes this possible using entities named structures. In the Functions palette

inside the Programming menu is a submenu Structures. Variables and Decorations are also

placed in the same menu, but since they are not used to control the flow of the algorithm they

will not be covered in this text.

Besides the wire connections (which define the sequence of connected nodes) one of

the more common methods of flow control is using the comparison nodes located in the

Functions palette. However, in more complex decision trees a structure is usually a better

choice. Some of the commonly used structures are:

 Case structure,

 Event structure,

 Timed structure,

 Conditional Disable structure,

 Sequence/Stacked structure.

They are used to define several different algorithm flows based on a certain condition.

Case Structure

A Case Structure is used to define alternative algorithm cases depending on an input

value. They have an input that is used to define the condition for algorithm alternative cases

selection. It is called a Case Selector. The alternative cases of the structure are automatically

adapted to the data type connected to the Case Selector. Any data type is accepted (Boolean,

Integer, Double, String, etc.), and the number of alternative cases is not limited (except by the

possible values for a certain data type). Alternative cases are represented by individual frames

that can be accessed via drop-down menu at the top of the structure. Cases can be added or

removed through a right-click menu on the boundaries of the structure. The code contained

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

in the frame of a certain case is executed if the value of the Case Selector corresponds to the

values indicated in the case title (drop-down list entry). All the possible values of the input to

the Case Selector need to be covered (have a case/frame that is executed for the value). This

can be overcome by specifying a Default case for all those that don’t need a specific piece of

code.

 The following example depicted in Figure 1 illustrates a simple use of the Case

Structure. The code includes three controls (Input1, Input2 and SUM) and an indicator on the

user interface (Front Panel). The program includes two alternative algorithms depending on

the SUM switch value. If the switch is pressed (value is True) the executed code provides the

sum of the inputs as the result. However, if the switch is depressed the result displayed is the

difference of the input values. The alternative cases are indicated by the frame top case title,

which doubles as the Case Selector value that triggers the case execution. The points at which

wires (and values) enter or exit the structure are called tunnels. For the exit tunnels it is

important to have a value defined for every single case, otherwise the code can not be

executed. If there is a case (frame) that does not have a value (wire) connected to an exit

tunnel this is indicated by the empty (white) tunnel square on the boundary of the structure.

The Use Default if Unwired option can be activated through the right-click menu. This structure

is essentially equivalent to the Switch-Case command in other programming languages.

Figure 11 Example of using case structure.

Assignment 3

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

Produce a VI similar to the illustrated example with an arbitrary Front Panel design.

The VI should be able to deliver a result based on the Numeric Slider selection of an arithmetic

operation. The options should include summation, retraction, multiplication or division of two

input values. The result should be calculated only for positive input values, otherwise the

result should display 0.

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

6. Loops

As it was mentioned earlier, sometimes it is necessary to execute the same sequence

of instructions (algorithm) a number of times consecutively. In order to avoid copying whole

segments of code (or parts of Block Diagram) we use loops. As with most other programming

languages, LabVIEW implements two types of loops:

 For loop.

 While loop.

The For loop is used when the needed number of code repetitions is available in

advance. A good example would be to ask the user to input twenty numerical values which

are then used to perform some calculations. The While loop is used when the number of

repetitions is not available in advance, and is dependent on a certain condition or an action

performed by the user. An example would be to ask the user to input as many numerical values

as he would like, and to signal the end of input by typing in a negative value.

In LabVIEW the loops are structures marked by the loop frame. Any code within that

frame is performed repetitively until the given condition is met.

For loop

The graphical representation of an empty For loop is illustrated in Figure 12.Error!

Reference source not found.In the top left corner is the Loop Count value. This is the value

that determines the number of times that the loop will be executed. Inside the loop frame is

a blue indicator marked i. This is the indicator of the current (when executing the program)

loop iteration. It basically counts the loop executions, and is updated at the end of each

iteration. The i < N condition is checked at the start of every iteration. If N = 0 the code within

the loop is not executed, not even once (since i starts at 0). At the end of loop execution the

iteration counter states the value for the last fully executed iteration (normally it should be N-

1).

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

Figure 12 For loop appearance

While loop

An empty While loop is illustrated in Figure 13. In contrast to the For loop it does not

contain a Loop Count, however, it is equipped with a terminal for conditional loop stopping.

The condition is checked at the end of each iteration and if the logical value of the condition

is True the execution of the loop is stopped (Stop if True). The iteration count i behaves exactly

the same as within a For loop. An alternative variant of the loop has a Continue if True

conditional terminal, that behaves as a negation of the described type. This corresponds to

the do-while command in other programming languages. This option is available through a

right-click on the terminal.

Figure 13 While loop appearance

Assignment 4

Modify the assignment 2 so that the program runs until user presses a STOP button on

the Front Panel.

Tip: Use the loop structures.

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

Assignment 5

Produce a VI that simulates die throws. The die is “thrown” when the button Throw is

pressed. The VI should output a random integer value in the 1 – 6 range. The result should be

displayed in the numerical indicator Current Value and with the help of a graphical 3×3 LED

indicator as illustrated in Figure 14. The VI should run until the EXIT button is pressed.

Figure 14 Example for die value 1 , 5 and 6 respectively

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

7. Data Structures

Data structures most commonly used in LabVIEW are Arrays and Clusters. These

structures make the manipulation of large amounts of data easier and reduce the number of

wires in the Block Diagram.

Arrays

Arrays, as with the command line programming languages, are used to store data of a

same type (e.g. I8, U32, Boolean, String, etc.). Arrays can be explained as ordered sequences

of data (values) of a certain type and length. If it is, for some reason, required to temporarily

store and process a large amount of data of the same type, placing it in an array makes it

easier to access individual values and perform calculations with them. Additional advantage

comes in the form of an abundant palette of array specific tools that are used to this end.

Without the use of arrays every single value (of some type) would have to be represented with

it’s own control or indicator. This would make reuse of the same code (within a loop)

extremely difficult, as you would need to reference every single control/indicator individually.

When using arrays only one reference is needed, and the individual values are addressed by

numerical integer values – indices. This (index addressing) can therefore be manipulated

mathematically, which is substantially simpler.

Arrays are especially convenient to store hardware data acquisition results, since these

results are inherently of the same type (for one acquisition process). In LabVIEW arrays can

grow dynamically as new values pour in and it is not needed to worry about memory

reservation as in for instance C programming language. Every array value has an index

assigned and this is essentially the address (position) within an array. Indices start with 0 and

end with N-1 for an N element array.

Arrays are added to the Front Panel as empty shells from the Arrays, Matrix & Cluster

menu in the main palette. Each array can be either an Indicator or a Control, depending on the

nature of the terminal inserted into the array shell. Data type is also tied in with the data type

of the inserted Indicator/Control. The number of values displayed can be modified by

“stretching” the outer limits of the array shell.

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

Figure 15 Slider Control Array

In Figure 15 an one dimensional (1D) array of slider controls is displayed. Three values

are available simultaneously. This, however, does not indicate that the size of the array

(number of elements) is equal to three, it only guarantees that it is not less than three.

Figure 16 Boolean Indicator Array

In Figure 16 a 1Darray of Boolean indicators is displayed. The highlighted index selector

is not set to the first element of the array (index 0), but to the third element (index 2). Notice

that values at indices 2 through 5 have values [T, T, F, T]. The size of the array in this example

is 6 (last index 5). The following values are not available – they are greyed out since they are

not defined.

It is also good to note that in both figures 1D arrays are displayed. However, in Figure

15 it is displayed as a column, and in Figure 16 it is displayed as a row. This makes no difference

whatsoever when dealing with 1D arrays, and is up to the programmer/user.

The default number of dimensions for arrays is one, but this can be extended if needed

to any number of higher dimensions. A helpful visualization is to think of 2D arrays as tables,

where one of the dimensions corresponds to row number and the other to the column

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

number. A further expansion of this approach can be refined to represent the third dimension

as the page number (of a book) on which the table is set, the fourth as the book volume (in a

series of books), etc.

A 2D array is created thorugh a 1D array shell right-click menu option Ad d dimension.

A 2D array of Boolean indicators is illustrated in Figure 8.

Figure 17 2D Boolean Indicator Array

Array palette tools

Table 6 gives an overview of some basic array tools available from the palette.

Table 6 Basic Array Operations

Tool description Tool representation

Returns the number of
elements in each of the array
dimensions

Returns the element or
subarray of the n-dimensional
array at specified index

Replaces the element or

subarray of the n-dimensional
array at specified index with the
new element/subarray
(number of elements of the
original array does not change)

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

Inserts the element or
subarray (n or n-1 dim array)
into the n-dimensional array at
specified index (number of
elements of the original array
increases)

Deletes an element or
subarray from the n-
dimensional array of length
elements starting at index. Both
the new (reduced array) and the
deleted portion are available as
outputs

Creates an n-
dimensional array in which
every element (a total of
dimension size) is set to the
value of element

Concatenates (joins
together) same dimension
arrays/elements, or appends
(adds to the end) an (n-1)-
dimensional element to the
array

Returns the maximum
and minimum values found in
the array, along with their
indices

Moves the elements of

the array by n positions in the
direction of the sign (+ from left
to right; - from right to left). The
number of elements remains
the same overflow moves to the
opposite end

An example of an array manipulation VI Block Diagram is illustrated in Figure 18, and

the result is displayed in Figure 19.

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

Figure 18 Example of an array manipulation

Loops and arrays (auto - indexing)

To access consecutive single values of an array placed outside the loop from inside the

loop the simplest approach is to use the auto-indexing option on the tunnel indicator. This is

the default option when dealing with For loops, and can be activated manually (right-click

menu Tunnel mode-indexing) when using a While loop. It can be deactivated in a similar

fashion on a For loop tunnel. This tunnel mode strips a dimension from the data coming into

the loop, and produces the same result as Index Array from Error! Reference source not

found. would produce with iteration counter i value connected to the index input.

When crossing through an indexing tunnel from inside the loop to the outside a

dimension is added to the data connected to the tunnel. The result is like the one Build Array

from Error! Reference source not found. would produce if values (of the wire connected to

the tunnel) for every single iteration of the loop were appended through this operation to the

previous result.

Figure 19 Example array operations execution result

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

An example of a loop with indexing mode of the tunnel enabled is displayed in Figure

20.

Figure 20 Indexing tunnel mode

It is important to note that the Loop Count (N) does not have to be connected. The

number of elements of the Incoming Array limits the number of iterations. It is possible to

lower the number of iterations (compared to Incoming Array size) by connecting a smaller

value to Loop Count (N), but it is not possible to increase it. The Outgoing Array will contain

random values that were generated in each of the loop execution iterations. The size of the

Outgoing Array will be the same as that of the Incoming Array in this example.

Clusters

Clusters are a data structure that can contain multiple types of data in one package. By

their nature they correspond to structures in the C programming language. In difference to

arrays, which can change in size dynamically, clusters have a constant size. They are formed

by grouping different (or same) types of data. Individual elements of clusters are accessed by

unpacking or unbundling a cluster and wiring the appropriate connection terminal of the

Unbundle node. The creation of the cluster is very similar to creating arrays. From the Array,

Matrix & Cluster menu an empty cluster shell is dropped onto the workspace. It is then

populated with indicators/controls of the data types that you wish to use. In difference to

arrays, several indicators/controls can be dropped into a cluster and they can all be of different

data types (but don’t have to be). A single cluster is either an indicator or a control, and can

therefore only be populated with terminals of the corresponding type. In Figure 21Error!

Reference source not found. a cluster containing several different controls is displayed. It

consists of one I32 numeric, one Boolean, two string and a combo box control.

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

As soon as a terminal is created on the Front Panel, a representation of it also appears

in the Block Diagram, as is the case with all terminals (no matter what type) in LabVIEW.

Figure 21 An example cluster with different customer information

As with arrays, clusters have a separate palette that contains many specific tools useful

for their manipulation. Basic cluster manipulation tools are represente in the Table 7.

Table 7 Basic cluster manipulation tools

Tool description Tool representation

Unpacking individual (or
multiple) elements of the cluster
package by designated name
selection.

Overwrites the
designated element of the input
cluster

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

Unpacks all the elements
of the input cluster

Builds a cluster of
elements wired to the input
terminals. If a cluster is wired to
the definition input (upper
terminal) than the node can only
replace existing cluster elements

String functions

Strings maybe do not belong to this chapter but their manipulation is very closely

related to the manipulation of arrays so they are included in here.

As mentioned earlier Strings are basically streams of characters – a text. Text

manipulation is very often needed in practice. For example – to retrieve a single word from

the whole sentence or to compose a text report from a Virtual Instrument. Some of the useful

functions that the programmer can use with the Strings are represented in the Table 8.

Table 8 Useful String functions.

Tool description Tool representation

Calculates the number of characters in the
string.

Joins multiple strings together. Can be
extended for multiple inputs.

Returns a substring of the input string based
on the beginning index and the length parameter.

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

Divides an input string into two strings based
on the second input string.

Finds and replaces one input string within another
input string. Can replace all occurrences or just the
first.

Converts the input string to number based on
the format input. Uses C language based string
formatting.

Converts the input number to string based on
the format input. Uses C language based string
formatting.

Assignment 6

Create a virtual instrument that enables the user to enter numbers through the numerical

control and a button on the front panel. Each number should be stored in the array of

numbers. Data entry is over when user enters -1 in the numerical control.

After the data entry Vi calculate the arithmetic mean of all entered numbers (except -1) and

what was the maximum value, minimum value entered.

Assignment 7

Create a virtual instrument that enables user to enter values about different fish into a

cluster on the front panel.

Data to be entered about a fish are: name (String), weight (double), length (double), is it a

seafish (boolean). User can enter values for 20 fishes. When the data entry is over the

program should display the average weight af all seafish.

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

8. Use of acquisition devices (NI MyDAQ)

As it was previously mentioned, one of the main characteristics of the LabVIEW

programming environment is data processing and analysis. However, in order to work with

data, it first needs to be acquired and imported into the environment. This is greatly simplified

using peripheral data acquisition devices produced by the same company that produces

LabVIEW – National Instruments.

One of these devices is called MyDAQ. It is a relatively low cost device designed for

student and educational applications. There are several options for data acquisition available

within it. It is equipped with A/D and D/A convertors so that analog data can be either input

into the device, or output from it and there are also digital input/output terminals.

It is connected to the computer via an USB port and with the appropriate driver

support (optional installation with the LabVIEW environment package) it is very easy and quick

to setup and be put to work acquiring (or delivering) data.

NI ELVISmx Instrument Launcher

This software is a program tool that can use MyDAQ as a peripheral device to acquire

or deliver analog and digital signals. No LabVIEW programming knowledge is needed in order

to use it. The user interface is graphical and mimics the look of standard stand-alone

instruments typical for electrical measurements and testing. It can also be used in combination

with other NI equipment (e.g. ELVIS after which it was named and for which it was primarily

developed).

Available modules are stated in the next list. Detailed instructions are not considered

in this material.

 Digital Multimeter

 Oscilloscope

 Function Generator

 Variable Power Supply

 Bode Analyzer

 Dynamic Signal Analyzer

 Arbitrary Waveform Generator

 Digital Writer

 Digital Reader

 Impedance Analyzer

Not all modules are available to use with the MyDAQ device. For Digital Multimeter

applications there is an extra set of probes in the package (separate terminals).

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

Data acquisition and MyDAQ

When a sensor detects some physical property (e.g. temperature, pressure,

illumination, etc.) it actually converts the property value into an electric signal and sends this

signal to a processing device for further analysis. The receiving and primary processing of the

signal, on its way to the computer, is actually done by data acquisition devices or DAQs. The

computer (or the program running on it) needs to know where the required data comes from,

how often does it need to “read” the value and how long does it need to keep “reading” it.

When dealing with analog signals an additional step of analog-digital signal conversion is

needed. This is done on order to reduce the data to a manageable size, since an analog signal

contains an infinite amount of data (theoretically).

When acquiring data a part of the acquired values is correlated to the measured

property, but there is also a second part of data which does not describe the measured

property. This is called noise. Noise covers all the unwanted occurrences that have found their

way into our measurement data and have influenced the values that we have obtained in the

process of measurement. There are different types of noise and they can stem from the

measurement system itself, imperfections of the sensor element, temperature fluctuations,

random background electromagnetic signals etc. If the level of noise is much lower than the

level of the signal that we are trying to measure, it can sometimes be ignored, but when this

is not the case there are a couple of things that can be done to improve the situation. The

noise frequency is often higher than the measured signals, and this can produce some

difficulties when digitizing the resultant total signal. Depending on the source of the noise

some of the possible steps are using higher quality detectors, increasing the number of

measurements and averaging the results, filtering (hardware) the signal prior to acquisition

(before the DAQ device), filtering (software) the signal after the acquisition (after the DAQ

device).

When the noise originates from the environment in which the measurements are

made, a higher quality sensor cannot correct the problem significantly. An increased number

of measurements and then averaging or maybe signal filtering are the best approach. Filtering

prior to ADC can be costly, since it includes additional hardware but can help with aliasing

frequency problems due to higher (than measured signal) frequency conversions. Filtering

post ADC assumes the use of digital filters, but also of higher sampling frequency

(oversampling) in order to avoid aliasing problems.

The signal from the sensor needs to be conditioned for the acquisition device. The

DAQs have a working range (voltage) and the incoming signals often need to be amplified

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

and/or shifted to fit into the declared DAQ range. Filtering is also a frequent demand, but it

has already been discussed in the previous paragraph.

MyDAQ is a device which offers analog signal connection, AD conversion and

forwarding acquired data to the LabVIEW environment.

Besides the analog inputs there is also a series of digital connections which can be

either incoming or outgoing. Digital inputs, depending on the standard and type (CMOS, TTL)

are mostly designed for two separate voltage ranges for a logical 0 (False) and a logical 1

(True).

 When performing AD conversion an important parameter to have in mind is the

convertor resolution, which is defined by the number of bits available for coding the values of

the input signal, as well as the dynamic voltage range the convertor is designed for. By

increasing the number of coding bits the number of available voltage levels increases (with

smaller steps between neighbor levels). This means that the digitized sample value will be

closer to the real value of the input analog signal. However, due to smaller steps between

neighboring digitized signal levels the noise sensitivity increases.

When acquiring signals from LabVIEW it is necessary to define:

 Device to be used for acquisition (sometimes multiple devices are available)

 The correct physical input terminal

 The sampling frequency

The complete set of acquisition instructions is called a Task. Data acquisition is possible

even outside of the LabVIEW programming environment with the use of Measurement and

Automation Explorer (MAX) tool. This approach is useful when testing the functionality of data

acquisition. From inside the LabVIEW environment the easiest way to setup acquisition is

through DAQ Assistant Express VI. It is located in the Measurement I/O palette, under DAQmx-

Data Acquisition Group.

When the appropriate node is dropped onto the Block Diagram a user dialogue is

started which guides the user through the task creation. First step is to choose if the signals

are to be acquired (input) or generated (output). Next you choose the nature of the signals –

analog or digital. On the analog branch there are a number of options available, but most

applications deal with voltage. After this has been set a new list of available analog voltage

connections is displayed, and the correct one needs to be selected. The final screen offers the

possibility of testing the configured data acquisition (Run on the toolbar at the top with

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

numerical/table or graphical representation of values directly beneath it), and some fine

tuning of timing options (sampling frequency) as well as the dynamics of the signal (voltage

range). The timing options include:

 Acquisition mode (one sample, multiple samples, continuous acquisition)

 Samples to read (with multiple samples)

 Rate (sampling frequency selection)

After clicking OK the configured task is created and prepared for use within the VI. The

acquired data is available from the Data terminal, and is usually of the Dynamic Data Type

(DDT).

Assignment 8

Using LabVIEW programming environment construct a software multiband audio

signal equalizer for signals acquired from the audio input of the MyDAQ. The resulting signal

should be routed to the audio output of the device.

9. Simulating an acquisition device

In case a user does not have a DAQ available it is possible to simulate one using the

DAQmx program tools. Before it can be used it needs to be created in the MAX. Right-clicking

the Devices and Interfaces section opens a menu with the Create New option as in Figure 22.

Figure 22 NI MAX new device

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

In the user dialogue the Simulated NI-DAQmx Device or Modular Instrument should be

selected as in Figure 23.

In the next window (Figure 24) a device to be simulated needs to be picked from a list

of all devices available for simulation. The devices differ in characteristics such as the number

of analog and/or digital inputs/outputs.

After completing the procedure the selected device becomes available in the LabVIEW

environment as a simulated acquisition device. The further use of the simulated device is

identical to that of a real, physical device. The DAQ Assistant user interface behaves in the

previously described way. The signals coming into the simulated device are, of course, also

simulated, so it is required to select the desired signal from the options available.

Figure 23 NI MAX simulate device

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

Figure 24 NI MAX list of devices available for simulation

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

10. Conclusion

LabVIEW is a tool for graphical programming designed for easy (or easier) physical

environment measurement using different data acquisition devices.

Programs produced in LabVIEW are called Virtual Instruments. They are basically

designed to imitate and improve the functionalities of stand-alone measurement devices. The

programming environment consists of two main windows:

 Front Panel

Adding controls and indicators to this window enables the user to input information or

receive it from the virtual instrument. Representations of these terminals are automatically

placed in the Block Diagram. The resulting user interface is graphical in nature with all forms

of interactive objects such as buttons and switches, LEDs, graphs, etc.

 Block Diagram

This window is the programmers view, and all the functionality of Front Panel

elements is setup here. The most important paradigm of LabVIEW programming is Dataflow,

and it determines the order in which sections of code are executed. The order is not

dependent of the position but of the wire connections connecting code sections. Wires

transport data between nodes. Nodes correspond to classical commands. The usual

programming tools , such as case selectors, loops and similar are available in a graphic form.

Data structures are available and used to manipulate large amounts of same type data

(arrays) or packaged data of different types (clusters).

Data acquisition devices are easy to setup in LabVIEW, and acquired data can easily be

accessed and processed.

If a physical DAQ device is not available it can be simulated.

The primary focus of this instructional material was to serve as a supplement to the laboratory

exercises that are part of the course LabVIEW graphical programming at the Zagreb Univesity

of Applied Sciences. The scope of the material was not aimed beyond that of a quick reference

guide. For a more detailed explanation of concepts and functionalities an interested user is

directed to try out the following books:

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

 Jeffrey Travis, Jim Kring: LabVIEW For Everyone; 3rd edition, Prentice Hall 2006;

ISBN-13: 978-0131856721

 Ronald W. Larsen: LabVIEW For Engineers; Prentice Hall 2011; ISBN-13: 978-

0136094296

The National Instruments webpages also present an abundance of materials available in the

form of presentations or videos, and should provide a valuable additional resource on specific

subjects, if not as a general overview.

The European Commission's support for the production of this publication does not constitute an

endorsement of the contents, which reflect the views only of the authors, and the Commission cannot

be held responsible for any use which may be made of the information contained therein.

List of figures

Figure 1 Front panel for the Example 1. ... 7

Figure 2 Block diagram of the Example 1.- ... 8

Figure 3 Execution controls .. 9

Figure 4 Possible front panel for the Assignment 1 VI. .. 11

Figure 5 Front panel layout for the Example 1 ... 18

Figure 6 Block diagram for the Example 1 .. 18

Figure 7 Possible front panel for the Example 2 .. 21

Figure 8 Block diagram for the Example 2 .. 22

Figure 9 Possible front panel for the Example 3 .. 24

Figure 10 Block diagram for the Example 3 .. 25

Figure 11 Example of using case structure. .. 27

Figure 12 For loop appearance ... 30

Figure 13 While loop appearance .. 30

Figure 14 Example for die value 1 , 5 and 6 respectively ... 31

Figure 15 Slider Control Array .. 33

Figure 16 Boolean Indicator Array .. 33

Figure 17 2D Boolean Indicator Array .. 34

Figure 18 Example of an array manipulation ... 36

Figure 19 Example array operations execution result ... 36

Figure 20 Indexing tunnel mode ... 37

Figure 21 An example cluster with different customer information 38

Figure 22 NI MAX new device ... 45

Figure 23 NI MAX simulate device .. 46

Figure 24 NI MAX list of devices available for simulation .. 47

List of tables

Table 1 Useful keyboard shortcuts ... 9

Table 2 Labview basic data types ... 13

Table 3 Arithmetic operators and their dscription ... 16

Table 4 Logical operators and their description ... 19

Table 5 Comparison operators ... 22

Table 6 Basic Array Operations .. 34

Table 7 Basic cluster manipulation tools .. 38

Table 8 Useful String functions. .. 39

file:///C:/Users/Debeli/Google%20Drive/Posao/Erasmus/K2+%20partnership/IntelectualOutputs/IO9%20-%20New%20instructional%20script%20for%20introductory%20laboratory%20exercises%20in%20software%20designed%20instrumentation/Final%20versions/After%20review/ITASDI_IO7_Inst_script.docx%23_Toc24447248
file:///C:/Users/Debeli/Google%20Drive/Posao/Erasmus/K2+%20partnership/IntelectualOutputs/IO9%20-%20New%20instructional%20script%20for%20introductory%20laboratory%20exercises%20in%20software%20designed%20instrumentation/Final%20versions/After%20review/ITASDI_IO7_Inst_script.docx%23_Toc24447253

