Innovative Teaching Approaches
in development of Software Designed
Instrumentation and its application

Itasdi in real-time systems

The Advanced Applications of LabVIEW

Lecture 1: Sequential state machine

Co-funded by the
Erasmus+ Programme
of the European Union

Dariusz Tefelski, Angelika Tefelska AAL 2018/2019

Sequential state machine

Application of state machine

@ State machine can be used for all sequential tasks e.g.
implementation of all functionality of machines, management of
processes in experiments, etc.

@ The state machine can be easily modified by adding another step as
next frame in its case structure.

@ The code is getting smaller and easy to read and modify.

Dariusz Tefelski, Angelika Tefelska AAL 2018/2019

Sequential state machine

Structure of state machine

WHILE LOOP

o[Tnit", Default < pf

CASE STRUCTURE

5 CODE HERE
EMNUM CONSTANT

©

@ Enum constant should include all necessary steps. You should draw algorithm
of code using blocks. All blocks should be the steps included in enum.

@ Remember to make type def from enum to easily modify it in future.

Dariusz Tefelski, Angelika Tefelska AAL 2018/2019

Sequential state machine

Chose program
Block

Heating of the oven
Cwven warmed up
Maintaining the temperature
Completing the baking
Coaling

Dariusz Tefelski, Angelika Tefelska AAL 2018/2019

Sequential state machine

Initialization of variables

@ Variables can be initialized in the beginning step in case structure (see

previous slide).

@ We can also use the Flat Sequence Structure to initialize the values of
controls/indicators. Remember to connect the Flat Sequence Structure with
While loop to make sure that Flat Sequence Structure will work first.

wriE Loce |
DO0000000000000 T "Chose program™ ~ P
[FLAT SEQUENCE STRUCTURE CASE STRUCTURE
8
Numeric
¥OBL]
[NEXT STEP
2 (e
[ENUM CONSTANT
Boolean
X
DO000000000000
stop
0 G -@

Dariusz Tefelski, Angelika Tefelska

AAL 2018/2019

Sequential state machine

Initialization from the disk

@ Reading data from the disk is very useful especially if you want to
modify it in the future.

@ You can read configuration data from CSV files by using Write/Read
Delimited Spreadsheet functions:

Write Delimited Spreadsheet.vi

format (%e.3f)

file path (dizlog if empty)
2D data

1D datg — | i 2R s error out

append to file? {new file:F) -
errorin (no error) =
transpose? (no:F) -

new file path (Mot A Pathi...

Converts a 2D or 1D array of strings, signed integers, or double-precision numbers
to a text string and writes the string to a new byte stream file or appends the
string to an existing file. Wire data to the 2D data input or 1D data input to
determine the polymorphic instance to use or manually select the instance.

Read Delimited Spreadsheet.vi

format {%%. 3f)

file path (dialog if empty)
number of rows (all:-1)
error in {no error)
transpose? (F)

Dariusz Tefelski, Angelika Tefelska AAL 2018/2019

Sequential state machine

Initialization from the disk

@ You can read configuration data from CSV or TXT files by using
functions:

Write to Text File Read from Text File

prompt {Open existing file)

file (use dialog)
refnum out count

refium out
text

prompt {Choose or enter fil...
file (use dialog)

text ancelled error in s ancelled
errorin = rror out =error out
Writes a string or an array of strings as lines to a file, This Reads a specified number of characters or lines from a byte
function does not work for files inside an LLB. stream file. This function does not work for files inside an LLB.
Open/Create/Replace File
prompt Close File
file path (use dialog) refnum out
o - cancelled refnum path
errorin = error out)
Error in = == grror out

Opens an existing file, creates a new file, or replaces
an existing file, programmatically or interactively
using a file dialog box. This function does not work
for files inside an LLB.

Closes an open file specified by
refnum and returns the path to the
file assodated with the refum.

Dariusz Tefelski, elika Tefelska

Sequential state machine

An example of reading the data from CSV/TXT file

[open -1 JD
read-only ¥j—7

Dariusz Tefelski, Angelika Tefelska

AAL 2018/2019

Sequential state machine

Initialization from the disk

@ You can read configuration data from initialization files (.INI).

@ Initialization files contain sections and keys. A key is a constant value.
A section is a group of related keys.

[Cotton]
Water Temperature = "40"
spin speed = "400"

puration of wa5hiﬂ§ = "a0"
puration of centrifugation = "30"
puration of rinsing = "30"
[Mixed]

Water Temperature = "40"

spin speed = "800"

puration of wa5hiﬂ§ = "ag"
puration of centrifugation = "30"
puration of rinsing = "30"

Dariusz Tefelski, Angelika Tefelska AAL 2018/2019

quential state machine

@ You can read configuration data from initialization files (.INI) by

using the functions:

NI_LVConfig.lvlib:Open Config Data.vi

configuration file path refnum
create file if necessary (T) file created?
error in (no error) error out

Opens a reference to the configuration data found in a
platform-independent configuration file.

MI_LVConfig.lvlib:Read Key.vi

section
refnum refnum out
key found?

default value
error in (no error) =

Reads a value assodated with 3 key in a spedified section
from the configuration data identified by refnum. If the
key does not exist, the VI returns the default value. This VI
supports multibyte characters in strings. Wire data to the
default value input to determing the polymorphic
instance to use or manually select the instance.

NI_LVConfig.lvlib:Get Key Names.vi

section
refnum refnum out
section exists?

error in {no error)

Gets the names of all keys in the specified section from
the configuration data identified by refnum.

elika Tefelska

Dariusz Tefelski, A

NI_LVConfig.lvlib:Close Config Data.vi

refnum file path
write file if changed (T)
error in {no error)

= error out

\Writes data to the platform-independent configuration
file identified by refnum and then doses the
reference to that file.

NI_LVConfig.lvlib:Write Key.vi
section

refnum — refum out
key - found?
valug - [T B == error out

error in (no error)

Writes a value to a key in a specified section of the
configuration data identified by refnum. This VI
modifies data in memory. To write data to disk, use the
Close Config Data VI. Wire data to the value input to
determine the polymorphic instance to use or manually
select the instance.

NI_LVConfig.lvlib:Get Section Names.vi

refnum refnum out
section names

rror out

error in {no error) =

Gets the names of all sections from the configuration
data identified by refnum.

Sequential state machine

— NEE
programs.ini I@]

R
B
gt

1

(3

1. Build Path| [2. Open Config Data

132 =

4. Close Config Data

3. Read Key

Dariusz Tefelski, Angelika Tefelska AAL 2018/2019

value

Sequential state machine

Itasdi

Thank you for your attention!

The lecture was prepared based on materials from "LabVIEW Core 3 Course Manual”.

This project has been funded with support from the European Commission. This communication reflects the views only of the
authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Dariusz Tefelski, elika Tefelska AAL 2018

/2019 12 /12

	Sequential state machine

