

D A R I U S Z T E F E L S K I , A N G E L I K A T E F E L S K A

L A B V I E W A N D O P E N
S O U R C E S O L U T I O N S

P U B L I S H E R : D A R I U S Z T E F E L S K I

Copyright © 2020 Dariusz Tefelski, Angelika Tefelska

published by dariusz tefelski

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by/4.0/.

This project has been funded with support from the European Commission. This communication reflects the
views only of the authors, and the Commission cannot be held responsible for any use which may be made
of the information contained therein.

First printing, March 2020

ISBN: 978-83-955851-0-4

http://creativecommons.org/licenses/by/4.0/

Contents

Introduction 19

Introduction to LabVIEW 25

LabVIEW interfacing techniques 111

Open source platforms 123

LabVIEW Packages 147

List of Figures

1 Simple LabVIEW application front panel and block diagram on
Windows platform 21

2 Simple LabVIEW application front panel and block diagram on
GNU/Linux platform 22

3 Icon and Connector Pane. 25

4 The block diagram (left side) and front panel (right side). 26

5 Controls palette. 26

6 Appearance of controls and indicators in cases of different palette
selected in LabVIEW. 27

7 Functions palette. 28

8 Connector pane patterns. 28

9 VI icon edit window. 29

10 Controls and indicators appearance in LabVIEW. 30

11 A program which calculates area of an equilateral triangle using
height and length of base provided by user. 31

12 An example which shows conversion of a number in order to per-
form the numerical operation. 32

13 An example showing number conversion from double precision
format to signed long integer. 32

14 Example look of boolean controls and indicators. 33

15 Available mechanical actions for buttons in LabVIEW. 34

16 Logic gates operation demonstration in LabVIEW. 35

17 A look of example string control and string indicator. 35

18 Program which shows available styles of displaying characters in
LabVIEW. 35

19 Demonstration of basic operations on strings in LabVIEW. 36

20 Program which demonstrate string conversion methods. 37

21 Elements added to enum type control. 38

22 Elements added to ring type control. 39

23 A program showing difference between enum and ring types. 40

24 Types and colors of wires in case of different data types in Lab-
VIEW. Source of information: https://knowledge.ni.com. 40

https://knowledge.ni.com

8

25 Array creation through putting numeric controls inside the array
frame. 41

26 Created array of numeric type. 41

27 An array creation with use of function Initialize Array. 41

28 Creation and addition of elements to the array with use of func-
tion Build Array. 42

29 A program that shows the size of array in LabVIEW. 42

30 Program that extracts an element, a row or a column from ar-
ray. 43

31 Program that extracts a subarray from array. 43

32 A program that demonstrates adding new element or array to
existing array. 44

33 Program that demonstrates how to delete elements from array. 44

34 Program that demonstrates operation of numerical functions on
arrays. 45

35 Adding an element to cluster on front panel. 46

36 Program which demonstrates cluster creation with use of existing
controls and Bundle function. 46

37 Program that shows cluster modification with use of Bundle func-
tion. 47

38 Program that shows extraction of element from cluster with help
of Unbundle function. 47

39 Change of elements order in cluster. 48

40 Program that shows cluster creation with use of Bundle by Name
function. 49

41 Program that demonstrates extraction of selected elements from
cluster with use of Unbundle by Name function. 49

42 Modification of parameters of the control. 50

43 Components of the case structure. 51

44 An example of case structure use with boolean value connected to
the case selector 52

45 Simple calculator created with a help of case structure. 53

46 Simple calculator created with help of case structure with not used
terminals. 54

47 An example of Select function usage. 55

48 An example showing for loop usage, in which 10 random num-
bers are generated and displayed in chart. 56

49 An example demonstrating for loop usage. 10 random numbers
are tossed and displayed on chart. Program may finish its work
after pressing the stop button. 57

50 An example showing for loop usage with auto-indexing tunnel. 57

51 An example showing for loop working in case of multiple condi-
tions affecting total number of iterations. 58

52 A while loop. 59

9

53 Program generates random number from range (0;5) as long as
this number will be equal to user selected number. 59

54 Event structure. 60

55 Edit window for events in event structure. 61

56 Program toss a random number from (0;1) range after Random
button is pressed. 61

57 Flat sequence. 62

58 Program demonstrating flat sequence operation. 63

59 Program, which compares mean values from two arrays. 63

60 Program, which compares mean values from two arrays. Repeat-
able fragment of code replaced by subVI. 64

61 Context help window demonstrating subVI with required, recom-
mended and optional terminals. 65

62 Principle of Wait (ms) function operation. 66

63 Principle of Wait Until Next ms Multiple function operation. 66

64 Basic functions to control time available in LabVIEW. 67

65 Program that demonstrates the different modes for displaying
data on Waveform Chart. 69

66 Program that demonstrates displaying two series of points on
Waveform Chart. 70

67 Program that demonstrates ways of data passing to chart of Wave-
form Graph type. 71

68 Program that demonstrates different ways of passing data to charts
of type Waveform Graph using points from two measurement se-
ries. 72

69 Program that demonstrates two ways of passing data to XY Graph. 73

70 Program that demonstrates ways of data passing to XY Graph with
two point series. 74

71 Program that demonstrates principles of shift register operation. 75

72 Program that demonstrates principles of shift register operation
without initial value specified. 76

73 Program that demonstrates principle of shift register operation
with several terminals. 77

74 Property Node creation. 78

75 An example program with use of Property Node. 79

76 An example of property node with two property terminals us-
age. 80

77 An example of Invoke Node. 81

78 Invoke Node creation method. 82

79 An example of creation of explicitly linked property node. 83

80 Program that demonstrates generation of two cosine waveforms
with different frequencies. Both loops should end their work in
the moment of stop button press. Attention: This solution is not
correct! It is here only for didactic purpose. 83

10

81 Program, which demonstrates generation of two cosine waveforms
with different frequencies. This is next potential solution. Atten-
tion: this solution is also not correct! This example is for didactic
purpose only. 84

82 Program which generates two cosine waveforms with different
frequencies. Correct solution of stop button. 85

83 Program, which demonstrates race condition phenomenon. 85

84 An example list of objects put in single global variable. 86

85 Program, that demonstrates passing different waveforms from VIs
to main VI with use of global variables. 87

86 Shared Variable creation. 88

87 Shared Variable property window. 89

88 Functional Global Variable. 90

89 Schema of operation on file. 91

90 Program, that writes random numbers to text file, then read them
from file with use of High-Level File I/O function. 92

91 Program, that writes random numbers to text file, and then it
reads them from file with help of Low-Level File I/O functions. 93

92 Block diagram of washing machine simulator. 94

93 Implementation of Start state of washing machine simulator. 95

94 Implementation of Filling Water state of washing machine simula-
tor. 96

95 Implementation of Washing state of washing machine simulator. 97

96 Implementation of Rinsing state of washing machine simulator. 98

97 Implementation of Spinning state of washing machine simulator. 99

98 Implementation of Stop state of washing machine simulator. 100

99 Program that demonstrates difference of operation of local vari-
able and notifier. 102

100 Master/Slave Design Pattern template. 103

101 Principle of FIFO buffer operation. 104

102 Basic functions to operate the queue. 105

103 Program that demonstrates the difference between local variable,
notifier and queue. 106

104 Producer/Consumer (Data) Design Pattern template. 107

105 Producer/Consumer (Event) Design Pattern template. 108

106 Typical program structure for accessing hardware 111

107 Context help window for Call Library Function Node. 113

108 Program demonstrating use of Call Library Function Node. 114

109 Configuration of Call Library Function Node. Function fold. 116

110 Configuration of Call Library Function Node. Parameters fold (re-
turn value). 117

111 Configuration of Call Library Function Node. Parameters fold (ar-
guments). 117

11

112 Program that demonstrates calling another program using System
Exec function in LabVIEW. Here an “ls” command is called on
GNU/Linux system. 120

113 The most popular Arduino Boards: Uno, Leonardo, Mega 2560,
LilyPad and Nano. Source: arduino.cc 124

114 The Arduino UNO pinout. Source https://www.theengineeringprojects.
com 125

115 The Arduino Mega 2560 pinout. Source https://www.pinterest.

com/ 126

116 The Arduino IDE window, where 1 - button to verify the code, 2

- button to upload the code to Arduino board and 3 - button to
open the Serial Monitor. 127

117 Scheme of setup for example in figure 118. 128

118 Program which turns LED on when button is pressed, prepared
in Arduino IDE environment. 129

119 Program which changes filling of PWM signal connected to LED
diode in Arduino IDE. 130

120 A scheme for setup for example in figure 121. 132

121 Program, that reads temperature from LM35 sensor, prepared in
Arudino IDE. 133

122 Result of program from figure 121 in serial monitor. 134

123 Result of program from figure 121 in serial plotter. 135

124 Scheme of setup to example in figure 126. 136

125 Available examples in installed library for ultrasonic range sensor
support. 137

126 Example program that reads distance from ultrasonic range sen-
sor. 138

127 Results of program from figure 126 running presented in serial
plotter. 139

128 Example program, that reads pressure and temperature from LPS331

sensor. 140

129 Results from program run, which is presented in figure 128, ob-
served in serial monitor 141

130 Raspberry Pi 4 Model B from the side. Michael Henzler / Wikime-
dia Commons / CC BY-SA 4.0 (https://creativecommons.org/licenses/by-
sa/4.0) 142

131 Raspberry PI B, Simon Waldherr / Wikimedia Commons / CC BY-
SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0) 144

132 Raspberry Pi 2B, Evan Amos / Wikimedia Commons / Public
Domain 145

133 LIFA library installation. 148

134 Fold Arduino in Functions palette. 149

arduino.cc
https://www.theengineeringprojects.com
https://www.theengineeringprojects.com
https://www.pinterest.com/
https://www.pinterest.com/

12

135 Scheme of hardware setup for program presented in figure 136. 150

136 Program that turns LED on and off, created with help of LIFA
library. 151

137 Scheme of hardware setup for program presented in figure 138. 152

138 Program that lighten up LED diode after movement is detected
by PIR motion sensor. Program is prepared with use of LIFA
library. 153

139 Scheme of hardware setup for program presented in figure 140. 154

140 Program that measures temperature from LM35 sensor and changes
RGB LED color accordingly. 155

141 Scheme of hardware setup for program presented in figure 142. 157

142 Program that measures temperature with use of LM35 sensor and
displays temperature value on LCD display. 158

143 Program, that allows to dynamically change RGB LED color. 159

144 Scheme of hardware setup for program presented in figure 145. 160

145 Program that sets selected angle on servo. 161

146 Available functions in Sensors fold of LIFA library. 162

147 KA-Nucleo-Weather shield. Source: https://kamami.pl. 163

148 Block diagram of weather station project. 163

149 Program, that reads values of temperature, pressure and humid-
ity. A Configure state of state-machine is presented here. 164

150 Program, that reads values of temperature, pressure and humid-
ity. A Read pressure state of state-machine is presented here. 165

151 24-bit value praw consists of P1, P2, P3 read bytes. 165

152 SubVI, that converts 3 bytes to 24-bit value and calculate pressure
value. 166

153 Program, that reads values of temperature pressure and humidity.
A Read temperature state of state-machine is presented here. 167

154 SubVI, that calculates temperature value taking two bytes on in-
put. 168

155 Program, that reads values of temperature, pressure and humid-
ity. A Read humidity state of state-machine is presented here. 169

156 SubVI, that configures humidity sensor. 170

157 Idea how to obtain relative humidity value, using calibration points.
Source: https://download.kamami.pl/p558410-hts221tr.pdf. 170

158 Register map of humidity sensor. Source: https://download.

kamami.pl/p558410-hts221tr.pdf. 171

159 SubVI, that configures humidity sensor. 173

160 SubVI, that converts 2 bytes into 16-bit value. 174

161 SubVI, that reads humidity values and calculates relative humid-
ity using equation 3. 174

162 Functions for communication with devices over SPI bus from LIFA
library. 175

163 Configuration of Arduino board type. 176

https://kamami.pl
https://download.kamami.pl/p558410-hts221tr.pdf
https://download.kamami.pl/p558410-hts221tr.pdf
https://download.kamami.pl/p558410-hts221tr.pdf

13

164 Program which turns on and off LED diode with help of LINX
library. 177

165 Program that turns LED diode on when motion is detected with
help of LINX library. 177

166 Program that reads voltage value from analog pin, where LM35

temperature sensor output is connected. Program prepared with
use of LINX library. 178

167 Scheme of hardware setup for program presented in figure 166. 179

168 Program that allows duty cycle changing of RGB diode colors with
help of LINX library. 179

169 Scheme of hardware setup for program presented in figure 168. 180

170 List of available folds with functions for sensors and actuators
control in LINX library. 181

171 Program that allows servomotor angle changing with help of LINX
library. 182

172 Program that controls speed of DC motor and controls direction
of rotation with use of LINX library. 182

173 Scheme of hardware setup for program presented in figure 172. 183

174 Project of weather station realized with use of LINX library. Con-
figure state of state machine is presented here. 185

175 Project of weather station realized with use of LINX library. Read
pressure state of state machine is presented here. 186

176 Project of weather station realized with use of LINX library. Read
temperature state of state machine is presented here. 186

177 Project of weather station realized with use of LINX library. Read
humidity state of state machine is presented here. 187

178 SubVI used to configure humidity sensor with use of LINX li-
brary. 187

179 SubVI used to read data necessary for performing interpolation of
humidity value (calibrated read) with use of LINX library. 188

180 SubVI used for reading measured value of humidity and per-
forming results interpolation (calibrated read) with use of LINX
library. 189

181 Making a connection to target device inside LINX Target Config-
uration. 191

182 Install Software tab in Linx Target Configuration window. 192

183 An example of LED blinking application created in LabVIEW us-
ing LINX library. 193

184 Blank project creation. 193

185 Creation of Raspberry PI Target device. 194

186 Make a connection to the target device in Project Explorer win-
dow. 194

14

187 Status of the connection to the target device. IP number and
bright green dot in bottom right part of raspberry icon are visi-
ble. 195

188 Deploying an application to the target device. 195

189 Front panel of stroboscope controller application. 196

190 Block diagram of stroboscope controller application. 197

191 Deployment of stroboscope controller application. 197

List of Tables

1 Representation of numeric data types in LabVIEW. Source of the
information: https://zone.ni.com/. 30

2 Default values of basic data types in LabVIEW. Source of informa-
tion: "LabVIEWTM Core 1 Course Manual" National Instruments,
2012. 53

3 Comparison of two types of loops: for and while. 58

4 Values stored in shift register and in indicator after starting the
program presented in figure 71. 75

5 Values stored in shift registers and indicators after starting the
program presented in figure 72. 76

6 Values stored in shift register and in indicators after starting the
program presented in figure 73. 77

7 GPIO header for Raspberry PI starting from 1B+/A+ is 40 pin.
Raspberry PI A/B had only 26 pin connector. 143

https://zone.ni.com/

17

This book is dedicated to doc. dr Wiesław Tłaczała,

who introduced LabVIEW, negotiated LabVIEW Academy

program and teached Principles of Virtual

Instruments Design for many years among

students of Faculty of Physics at Warsaw

University of Technology.

Introduction

National Instruments LabVIEW is a very innovative way to create vir-
tual instruments. It is a graphical programming language focused on
data flow concept. It is very easy for engineers to use it, to build sim-
ple graphical applications to control measurement equipment, prepare
test stands, acquire data, visualize and analyze data. It is very flexible,
easy to understand, easy to read and modify. That is why it is very
popular in scientific and engineering environments. However this is
a commercial closed source product. Some aspects of LabVIEW gives
opportunity to easily modify graphical code which is hierarchical and
this possibility is similar to open source concepts. Still this possibility
can be limited if such feature is necessary.

Big advantage of using LabVIEW is excellent support of National
Instruments hardware such as multi-purpose data acquisition devices.
In such combination preparation of virtual instruments is unbeatable
in such aspects as time of deployment (rapid application develop-
ment), quality and reliability. People trained in LabVIEW and National
Instruments devices tend to be much more productive then any other
solution.

LabVIEW is available for 3 system platforms: Microsoft Windows,
Apple MacOS and GNU/Linux. The best integration and support is
available for Microsoft Windows, but even on free operating system
like on GNU/Linux distributions it can be operated. This is possi-
ble mainly thanks to major world scientific laboratories like CERN,
where LabVIEW environment is used commonly on machines with
GNU/Linux systems. However support for GNU/Linux system is lim-
ited and only part of hardware is fully supported. Similar problems
occurs also for Mac users. So if you want to get most of LabVIEW and
National Instruments products features, the Windows version is a way
to go.

In figure 1 there is a view of front panel and block diagram of sim-
ple application developed on Windows platform and in figure 2 is
the same application run on GNU/Linux platform. Both looks and
behaves pretty sure the same. However Windows version is more pol-
ished and the interface is more agile. Also you can be sure that on

20 labview and open source solutions

Windows platform you will notice less problems and errors (especially
internal errors).

We have gained some experience working with students on Fac-
ulty of Physics in Warsaw University of Technology. We are teach-
ing LabVIEW programming (laboratories on "Principles of Virtual In-
struments Design" and "Advanced LabVIEW applications") as well as
open source technologies (laboratories like "Principles of Microcon-
troller Systems", "Principles of Embedded Systems"). We are pretty
sure, that such book can help students to improve their skills in pro-
gramming and understanding of both worlds: closed and open source
and point that connection between them is possible and also very fruit-
ful. Open source solutions may be very cost effective, easy to imple-
ment and give possibility of reuse in the future and be modified by
other people to adapt to other needs.

It is extremely important that young engineers could select proper
tools for their goals. This is also important for people who are in
charge of organizing the work.

This book was organized in chapters, which are dedicated for differ-
ent experience in LabVIEW graphical programming and open source
solutions. First chapter is a quick introduction to LabVIEW and we
suggest to read it if you are just beginning the adventure in LabVIEW
programming. It can be used also as a reminder for senior users, as
it was designed as a help for students which take course of "Prin-
ciples of Virtual Instruments Design". This chapter covers not only
the basic but also usage of design patterns like state machine, pro-
ducer/consumer etc. These are topics which are needed for exams
for Certificate of LabVIEW Associated Developer and higher degrees.
Students can take part on exams on Universities which have LabVIEW
Academy programs and get such a degree from National Instruments.
This is very motivating as such experts are sought in industry. Such
knowledge is needed to get a well paid job.

Closed and open source approach

Working with software development we encounter two approaches.
One is called closed source and another one is called open source.

Theses are completely different in their assumptions. Sometimes
it is seen as open source solution as a newer approach which should
change software development completely. Open source approach actu-
ally has come as an answer to closed source inefficiency and problems
which arose on software maintenance and specifically on hardware
changes and driver software which should be accordingly modified.
In many situations such software was prepared once and later not
modified. This rendered situations where some devices could not be

introduction 21

Figure 1: Simple LabVIEW application
front panel and block diagram on Win-
dows platform

operated on newer systems or these devices had limited features by
software where they could operate much better if software could be
modified. Open source is a fight to give possibilities to modify soft-
ware which controls devices in a way users would want.

Let’s identify also closed source approach. Closed source means
that users are not allowed to explore and modify sources of software.
Such software is distributed as binary files. According to assump-
tions, it should protect authors and enable them to earn money. Users
usually get a license to use such software and this is only possible in
strict ways. Such software is modified only by software vendors and
of course only when they care to modify and develop this software
further. There is always an anxiety, that such software development
could be stopped.

Open source gives possibility for non-stoppable development be-
cause every one interested in development can do this. Everyone can
download and compile source files as these are freely available. How-
ever there is a one problem. In open source approach it is not easy to
get money from users. Sometimes support of users can be paid (this
can be organized for large corporations), sometimes separate docu-
mentation, additional content, etc. In closed source approach, every
user needs to pay money for license to use such software. Frequently it
is needed to pay for single license or other business agreements could
be prepared. This approach gives easily more money and allows to
pay programmers for development.

However professional software licenses are expensive for casual users.
Such licenses can be paid by large organizations, corporations, etc. but
this is not suitable for single users. This is contradictory for software

22 labview and open source solutions

Figure 2: Simple LabVIEW applica-
tion front panel and block diagram on
GNU/Linux platformspread. Single users are more interested in open source, because there

are great communities which can help with software usage and devel-
opment. In closed source approach normally software vendors don’t
listen to single user needs, in open source approach, every one may
influence on software development.

LabVIEW for scientists and engineers

LabVIEW is famous as an easy, rapid and productive environment for
software development mainly for controlling wide spectrum of control
and measurement devices. In this environment engineers can prepare
tests, calibrations, data analysis and many other tasks just using graph-
ical language based on data flow paradigm.

It is invaluable tool for preparing graph, charts. There are but-
tons, scales, knobs and many other graphical user interface (GUI) wid-
gets, users can easily implement just by dragging them from available
palette. This is very convenient for preparing so-called "virtual instru-
ments". Virtual instruments are just hardware devices, which doesn’t
have physical interface for users (like real knobs, displays, etc.). They
are used with connection with computers or other control devices and
actually software provides all necessary components to communicate
with them, control them, display acquired data, and make calculations
and analysis. These steps can be prepared in such way that prepared
system will be extremely well suited for solving specific engineer prob-
lem. For virtual instrumentation many universal devices for data ac-
quisition (DAQ) and signal generation were produced. These devices
have excellent support in LabVIEW environment.

These mentioned features are welcome in scientific and engineer-

introduction 23

ing groups, because software development is not the main topic for
them. Stability, easiness of usage, compatibility are important. Soft-
ware should work as engineer is planning and debugging process
should be minimalized as much as possible.

National Instruments LabVIEW environment comes in some flavours
and there are also versions for students which are low-priced but lim-
ited by license in possibilities what user can do with prepared code.

Open source

Open source movement started because people have problems with
hardware like printers, when drivers were not available for their sys-
tems. If hardware specification is known, there is available documenta-
tion, or source code for another architecture is available, programmers
all over the world can prepare drivers for other systems (even if such
vendors went bankrupt, or just not want to support such hardware
any more). Many hardware vendors just kept as secret their software
designs, communication protocols, etc. This is why so-called reverse
engineering evolved. Just to reveal these secrets by testing, measure-
ments and using other sophisticated techniques.

Licenses

There are many open source licenses. Some of them allow almost
everything with source code, like Public Domain code. Other like BSD
license allows almost everything, but they don’t protect authors of
code, and finally there are GPL licenses, which are more restrictive, by
requirement of using them if derivative work is published. However
they protect also authors of code. These legal issues exceeds this book
topics. There are plenty of legal information over internet, just seek in
case of need.

Cooperation

Mixing software licenses may cause headaches. However, there are
many high quality open source codes available, easily downloadable
over internet, that it is impossible to not use some of them. Many
solutions are available only as open source. Even if there are propri-
etary solutions, frequently they are expensive and limited. If they have
errors, sometimes vendors don’t fix them or doesn’t want to.

If you use open source libraries, the best option is also to release
your software with open source license, however if it is not possible,
then you should know, that various licenses like LGPL allows to use
dynamic loadable libraries (DLL) or shared objects (.so) with such li-
cense along with your code under proprietary license. If you don’t

24 labview and open source solutions

change such libraries, it is only need, to specify on some “about” soft-
ware part, that such product is used, under LGPL license, and the best
would be to point to the internet website where users can download
source codes. This allows users even to replace such library, to study
its code. So these are flexible possibilities granted for users of software,
even if closed source parts co-exists.

Introduction to LabVIEW

Laboratory Virtual Instrument Engineering Workbench (LabVIEW) is
an programming environment for rapid and effective graphical user
interface application building. LabVIEW was designed for dealing
with measurement equipment, for data acquisition and for control-
ling devices using intuitive graphical interface. Engineers and scien-
tists nowadays use LabVIEW also for data analysis and for simulation
tasks.

The strength of LabVIEW is that it has wide set of libraries for
communication with measurement equipment, data analysis and vi-
sualization. These libraries are either installed by default or they can
be installed with VI Package Manager (VIPM) software, which is dis-
tributed with newer versions of LabVIEW together or can be also
downloaded from the web. Moreover National Instruments supply
wide set of drivers for measurement equipment like oscilloscopes, gen-
erators, multimeters, e.t.c.

LabVIEW is an environment based on “G” graphical programming
language, where instead text line commands, we use set of icons and
connecting wires. In textual programming languages, commands are
executed line after line, whereas in LabVIEW we have dataflow paradigm,
where data flow determined is by nodes. Using graphical language
gives possibility of easy and intuitive creation of user interface for ap-
plication execution control.

Figure 3: Icon and Connector Pane.

Programs prepared in LabVIEW are known as virtual instruments
(VIs), because in their appearance they look as the real measurement
devices. All LabVIEW programs consists of three elements: Front
Panel, Block Diagram (in fig. 4) and Icon and Connector Pane in fig.
3). A Front Panel is the graphical user interface. A Block Diagrams
is a space for placement of program graphical code. Icon and Con-
nector Pane determines the look of a VI inside another VI. Moreover
it also determines input and output connections, which are needed to
provide for correct operation of VI.

Front Panel is a graphical user interface, which consists of input
terminals called controls and output terminals called indicators. After
clicking the right mouse button on the front panel, a Controls palette

26 labview and open source solutions

Figure 4: The block diagram (left side)
and front panel (right side).

will be displayed. (in fig. 5).
User can select controls and indicators from four palettes: Modern,

Silver, System and Classic. Appearance of example controls and indicators
in case of differently selected palette is presented in figure 6.

Figure 5: Controls palette.

introduction to labview 27

The Silver palette has a wide set of available controls and indica-
tors. The Modern palette has controls and indicators with modern look
compared to classical palette. The Modern palette is recommended for
the most applications, where the Silver palette for creation fancy front
panels e.g. for customers. Classic palette is dedicated for applications,
which should be a part of the bigger project or for applications, where
controls and indicators would be customized. System palette is ded-
icated for applications, which will be executed on displays with only
16 colors available.

Figure 6: Appearance of controls and in-
dicators in cases of different palette se-
lected in LabVIEW.Block diagram is a space, where programmer puts the code. To

add functions, structures, loops or consts, one needs to click the right
mouse button on block diagram, which then opens Functions palette (in
fig. 7).

28 labview and open source solutions

Figure 7: Functions palette.

Figure 8: Connector pane patterns.

Icon and Connector Pane defines appearance of VI icon. Every VI
can be used inside another VI, in this case it is called “subVI”. The
equivalent of subVI is a function (or procedure) in textual program-
ming languages. Default appearance of VI icon is presented in figure
3. When in selected VI there are more then one subVI with default
icon, these icons can be distinguished from themselves by the number
placed in the bottom right corner of the icon. A good practice is to
change the look of VI icon, which makes that the code is more clear
and understandable. To change the look of icon, one needs to click the
right mouse button on the icon placed in top right corner of front panel

introduction to labview 29

and select Edit Icon... option. The edit window is presented in figure 9.
Connector Pane defines where in icon, the input and output terminals
should be connected. Default configuration of connector pane consists
of terminals in pattern: 4x2x2x4 (left side, top side, bottom side, right
side). To change the number and arrangement of terminals one need
to click the right mouse button on connector pane placed in top right
corner of front panel and select Patterns option. Available patterns are
presented in figure 8.

Figure 9: VI icon edit window.

Basic data types in LabVIEW

In LabVIEW we can use basic data types as: numeric, boolean, string
and enumeration type.

Numeric data type

Data of the numeric type can represent values in various forms, e.g.
integer numbers (integer) or floating point numbers (real). Available
number representations are presented in table 1. Representation of
any terminal can be changed by clicking of the right mouse button on
terminal and selecting Representation option.

In case of the needs, numerical terminals appearance may be changed,
which is presented in figure 10. Range of the selected control or indica-
tor can be changed by clicking the right mouse button on the terminal
and selecting Properties→ Data Entry.

30 labview and open source solutions

Numeric Data Type Bits Approximate Range
Single-precision, 32 (1.40e-45; 3.40e+38),

floating-point (-3.40e+38, -1.40e-45)
Double-precision, 64 (4.94e-324;1.79e+308),

floating-point (-1.79e+308; -4.94e-324)
Extended-precision, 128 (6.48e-4966; 1.19e+4932),

floating-point (-1.19e+4932; -6.48e-4966)
Complex single-precision, 64 (1.40e-45; 3.40e+38),

floating-point (-3.40e+38, -1.40e-45)
Complex double-precision, 128 (4.94e-324;1.79e+308),

floating-point (-1.79e+308; -4.94e-324)
Complex extended-precision 256 (6.48e-4966; 1.19e+4932),

floating-point (-1.19e+4932; -6.48e-4966)
Byte signed integer 8 (-128;127)
Word signed integer 16 (-32 768; 32 767)
Long signed integer 32 (-2 147 483 648; 2 147 483 647)
Quad signed integer 64 (–1e19;1e19)

Byte unsigned integer 8 (0;255)
Word unsigned integer 16 (0;65 535)
Long unsigned integer 32 (0; 4 294 967 295)
Quad unsigned integer 64 (0;2e19)

128-bit time stamp 128 (01/01/1600 00:00:00 UTC; 01/01/3001 00:00:00 UTC)

Table 1: Representation of numeric data
types in LabVIEW. Source of the infor-
mation: https://zone.ni.com/.

Figure 10: Controls and indicators ap-
pearance in LabVIEW.

https://zone.ni.com/

introduction to labview 31

In figure 11 there is an example program with numeric terminals.
This program purpose is to calculate the area of an equilateral triangle
from the given height and length of base. Input data are entered into
two controls called Length of base and Height. Values from controls are
propagated to inputs of Multiply function. To get the area of triangle, a
result from multiply should be divided by 2, so output from Multiply
function is connected to input of Divide function. On the second input
of Divide function, a constant value “2” is provided. Result of Divide
function is then propagated to input of indicator called Area of triangle.

Figure 11: A program which calcu-
lates area of an equilateral triangle using
height and length of base provided by
user.

In the example above, terminals with the same representation were
connected to a function. However if two terminals of different repre-
sentation will be connected to a function, there we will have an au-
tomatic conversion of simpler representation (less bits) to the more
complex one (more bits). It is designed in such a way, to not loose the
precision of numerical values. The conversion example is presented in
figure 12. Precision lose can be observed if we convert from double to
integer, which is presented in figure 13.

In case of connecting singed integer and unsigned integer to a func-
tion, the return result value will be unsigned integer. In the place
where wire is connected to function and where conversion occurs, a
red dot called Coercion Dot is shown.

In many cases, a conversion from one representation to another is a
necessity. In such cases we can use functions from Functions Palette→
Numeric→ Conversion explicitly.

32 labview and open source solutions

Figure 12: An example which shows
conversion of a number in order to per-
form the numerical operation.

Figure 13: An example showing number
conversion from double precision format
to signed long integer.

introduction to labview 33

Boolean data type

Next basic data type is boolean, which represents data with only two
states: TRUE and FALSE or ON and OFF. Example controls and indi-
cators are presented in figure 14.

Figure 14: Example look of boolean con-
trols and indicators.

In LabVIEW buttons have selectable mechanical actions. Available
types of mechanical action are presented in figure 15. Individual
graphs show what value the terminal will return after pressing the
button and releasing it. Graphs for switch mechanical action consists
of two lines. First line is marked by letter m (mechanical) and describes
the moment of pressing the button (arrow downwards) and releasing
the button (arrow upwards). Line marked by letter v shows the value,
which the button returns in case of m line state. E.g. for switch when
pressed mechanical action, in the moment of button press, the value
changes from FALSE to TRUE. After releasing the button, the value
read from terminal still will be TRUE. For switch when released me-
chanical action, the button returns TRUE value only after the release
of button. For switch until released mechanical action, in the moment
of button being pressed, the value will change from FALSE to TRUE
until the moment of button being released.

Following lines describe Latch type mechanical actions, which are
marked by RD letters. This line shows the moment of value readout
from the button. Every readout of value is marked by cross. E.g. for
latch when pressed mechanical action, in the moment of button press,
the value changes from FALSE to TRUE until the time of first readout.
So the event of button pressed will be read only once. Even if the fol-
lowing readout will take time before release of the button, the returned
value will be FALSE. In case of latch when released mechanical action,

34 labview and open source solutions

Figure 15: Available mechanical actions
for buttons in LabVIEW.

value changes from FALSE to TRUE in the moment of releasing the
button, and returns to FALSE just after the readout from terminal. For
latch until released mechanical action, the value from button changes
from FALSE to TRUE in the moment of button being pressed. Read-
outs of the value before releasing of the button doesn’t affect on value.
Only after releasing the button, the value changes to FALSE after read-
ing the value from the button terminal.

In figure 16 an example program using boolean terminals is pre-
sented. Program shows the principles of logic gates (AND, OR, NAND,
NOR, EXOR) operations. As input data, two controls named A and B
were used. Results of logic operations are propagated to indicators
named: AND, OR, NAND, NOR and EXOR.

String data type

The next basic data type is a string, which is a sequence of characters
encoded in ASCII. In figure 17 there is a look of string control and
string indicator presented.

Terminals of string type can display characters in four different
styles: Normal, Backslash Codes, Password and Hexadecimal. To change
the style of displayed characters, one needs to click the right mouse
button on terminal and choose: Properties → Appearance. An example
program with four indicators is presented in figure 18.

In figure 19 an example program with basic operations on strings
is presented. On the beginning constants of the string type are con-

introduction to labview 35

Figure 16: Logic gates operation demon-
stration in LabVIEW.

Figure 17: A look of example string con-
trol and string indicator.

Figure 18: Program which shows avail-
able styles of displaying characters in
LabVIEW.

36 labview and open source solutions

catenated into single string with a help of Concatenate String function.
Next, the length of string is checked using String Length function.
Moreover a part of the string is being extracted using String Subset
function, which also have input parameters like offset (the position
from where substring should begin) and length (how many characters
should the substring have). If on the input of String Subset function
a value will not be provided, then as a default, whole string starting
from the offset position will be returned. Finally, a Search and Replace
String function is shown, which searches provided string and replaces
found fragment with another provided.

Figure 19: Demonstration of basic oper-
ations on strings in LabVIEW.In figure 20 an example program which demonstrates different con-

versions methods of strings to numeric values and vice-versa was pre-
sented.

introduction to labview 37

Figure 20: Program which demonstrate
string conversion methods.

Enumeration type

The last from basic data types is enumeration type: enum or ring. First
of them assigns ordinal numbers to the entered names beginning from
zero. Second of them allows to write own ordinal numbers to selected
names. In figure 23 an example showing difference between enum and
ring types is shown. In figure 21 and 22 adding of items to enum and
ring is shown.

Every data type has specific style and different wire color on block
diagram. In figure 24 different wire types assigned to data types are
shown.

Array

An array is a set of elements of the same type, e.g. integer numbers.
In LabVIEW, arrays may be of any type, e.g. array of strings, array of
clusters, e.t.c. The only limit is that, you cannot create array of arrays.
However multidimensional arrays are allowed. To create an array, one
need to put object Array on front panel and put in them a control or
indicator of selected type (presented in figure 25) and 26). Created
array by default has one dimension. To create two dimensional array,
one need to click the right mouse button on iterator and select Add
Dimension.

An array can be also created by a function Initialize Array. An ex-
ample of function usage is presented in figure 27. Moreover creation

38 labview and open source solutions

Figure 21: Elements added to enum type
control.

and addition of elements to the array is possible with use of function
Build Array, which is shown in figure 28.

In figure 29 an example is given, where it is shown how to get
information about size of an array. In case of one dimensional array,
function Array Size returns numeric value. In case of two dimensional
array, function Array Size returns an array with two elements. The first
element of this array is a number of rows, and the second element of
this array is a number of columns.

In figure 30, an example is presented, in which it is shown hot to
extract single element from one dimensional (1D) array or a column or
a row from two dimensional array (2D). In such case, a function Index
Array should be used, which accepts on input an array and an index
number of the element. In case of 2D array, to receive an element,
on input of function Index Array, one need to put an index number
of row and an index number of column. If we supply only a row
number, function Index Array will return all elements from this row (all
columns). Similarly, when one supply only column number, function
Index Array returns all elements from selected column (all rows).

To extract the piece of array, one need to use a function Array Sub-
set, which accepts two arguments: index and length. First of them
describes from which index number function should extract a piece
of array. Second argument describes length of array that should be
returned. If on input length no value will be supplied, then function
Array Subset by default returns all of the elements of array from spec-
ified index number until the end of the array. An example of use of
Array Subset function is presented in figure 31.

introduction to labview 39

Figure 22: Elements added to ring type
control.

To add new element to the array, one needs to use Insert into Ar-
ray function or Build Array function (which will be described later).
Function Insert into Array takes on input an index number, where new
element should be placed in array. An example of function usage is
presented in figure 32. Function Insert into Array may also be used for
adding an array to another array. In such case on function input called
new element one needs to connect an array.

To remove element from array one needs to use Delete from Array
function, which takes on input:an array, length and index. The length
parameter describes how many elements will be deleted from supplied
index number. Function Delete from Array returns two arrays. First of
them is an array with elements deleted. Second array is an array with
deleted elements. In figure 33 there is an example of Delete from Array
function usage.

Functions described above allow to perform basic operations on ar-
rays. However in Array fold of functions palette there are more func-
tions e.g. Rotate 1D Array, Sort 1D Array, Split 1D Array, Reshape 1D
Array and Max & Min.

Arrays can be transferred to inputs of numerical functions, which
recognize connected type of data and adapt their actions according to
them (this is called polymorphism of functions). In figure 34 a pro-
gram in which two arrays are connected to Add function is presented.
In this case the element with zero index of “A” array is added to the
element with zero index of “B” array. Similarly elements with index
of one from arrays “A” and “B” will be added. The “A” array length
is 3, but “B” array length is 2, so the third element of “A” array will

40 labview and open source solutions

Figure 23: A program showing differ-
ence between enum and ring types.

Figure 24: Types and colors of wires
in case of different data types in Lab-
VIEW. Source of information: https:

//knowledge.ni.com.

be discarded. This is because “B” array is smaller. Add function will
return an array with 2 elements, which will be the result of sum of
elements from “A” and “B” arrays. Similarly operation of subtraction
can be achieved by using Subtract function.

https://knowledge.ni.com
https://knowledge.ni.com

introduction to labview 41

Figure 25: Array creation through
putting numeric controls inside the ar-
ray frame.

Figure 26: Created array of numeric
type.

Figure 27: An array creation with use of
function Initialize Array.

42 labview and open source solutions

Figure 28: Creation and addition of ele-
ments to the array with use of function
Build Array.

Figure 29: A program that shows the
size of array in LabVIEW.

introduction to labview 43

Figure 30: Program that extracts an ele-
ment, a row or a column from array.

Figure 31: Program that extracts a sub-
array from array.

44 labview and open source solutions

Figure 32: A program that demonstrates
adding new element or array to existing
array.

Figure 33: Program that demonstrates
how to delete elements from array.

introduction to labview 45

Figure 34: Program that demonstrates
operation of numerical functions on ar-
rays.

Clusters

Clusters are used for grouping data of different types, e.g. numerical
together with logic values. They are equivalent to structures in textual
programming languages. Elements in cluster can be of any type but
elements in cluster should be either controls or either indicators. Clus-
ters can be created in two ways. One of them is to put an Cluster object
on front panel. Cluster is available in Controls palette→ Array, Matrix
& Cluster. Next, selected elements should be dragged and dropped to
Cluster object on front panel, which is shown in figure 35.

Cluster can also be created from existing controls or indicators us-
ing one of two functions: Bundle or Bundle by Name. In figure 36 an
example of cluster creation with use of Bundle function is presented.

To modify an element in existing cluster, one needs also to use Bun-
dle function, where existing cluster should be connected to top termi-
nal, which is shown in figure 37.

To extract element from cluster, one needs to use Unbundle function,
which is shown in figure 38.

Elements which are returned from Unbundle function are in such
order how they were added to cluster. Sometimes it is convenient to
change this order. To change order of the elements in cluster, one
needs to click the right mouse button on the cluster border and select
Reorder Controls In Cluster option. A window shown in figure 39 shows

46 labview and open source solutions

Figure 35: Adding an element to cluster
on front panel.

Figure 36: Program which demonstrates
cluster creation with use of existing con-
trols and Bundle function.

introduction to labview 47

Figure 37: Program that shows cluster
modification with use of Bundle function.

Figure 38: Program that shows extrac-
tion of element from cluster with help of
Unbundle function.

48 labview and open source solutions

up, where every cluster element is indicated by two numbers: one
number is on a white background (actual element position in cluster),
where second number is on a black background (new element position
in cluster). After changes, new numbering should be confirmed by
pressing “confirm” button.

Figure 39: Change of elements order in
cluster.

Creation, modification and extraction of elements from cluster with
the help of Bundle or Unbundle functions may become cumbersome
with a large number of elements in cluster. Bundle and Unbundle func-
tions on input and output terminals shows only the data type, but not
a name of control or indicator. In such cases, it is more convenient to
use Bundle by Name and Unbundle by Name functions. In figure 40 a
cluster creation with use of Bundle by Name function was presented.

Unbundle by Name function allows to extract selected elements from
cluster. Such solution is particularly convenient when there is a large
number of elements in cluster and we need only to extract one of them.
An example of extraction of selected elements is shown in figure 41.

Type definition

In LabVIEW we can extensively customize controls and indicators for
our needs, e.g. we can change scale, range, look of controls and indi-
cators, and so on. If we would like to use customized control in many
places, in case of further modifications, we should modify separately
every instance of this control. Customization of such controls would
be tedious and uncomfortable, so it is good to create type definition or

introduction to labview 49

Figure 40: Program that shows clus-
ter creation with use of Bundle by Name
function.

Figure 41: Program that demonstrates
extraction of selected elements from
cluster with use of Unbundle by Name
function.

50 labview and open source solutions

strict type definition.
If control is of type definition, then after data type change (e.g. from

int32 to int64) or change of other property related to data type (e.g.
addition of new element to enumeration type “enum”), all instances
of control automatically will be also changed. However, still every
instance would have unique properties like: caption, label, description,
tip strip, default value, size, color, style of control or indicator.

If control is of strict type definition, then after change of control
look, all instances will also change the look. Every instance will have
unique: caption, label, description, tip strip and default value.

To set selected control as “type definition”, one need to click the
right mouse button on this control and select Make Type Def. option.
Next again clink the right mouse button on this control and choose
Open Type Def. option, which will open a window shown in figure 42.
Now, it is possible to change parameters of control and to choose the
type definition kind.

Figure 42: Modification of parameters of
the control.

Loops and programming structures

Case structure

Case structure is equivalent of if...else structure in textual programming
languages. It is used to take various actions in case of different con-
ditions. Case structure consists of: case selector (where a condition is
connected) and case label (possible states). To case selector, following
data types can be connected: integer, boolean, string or enumerated
type value. Components of case structure are presented in figure 43.

introduction to labview 51

Figure 43: Components of the case struc-
ture.

In case of boolean value connected to case selector, two states True
and False are possible. In figure 44 there is an example of case struc-
ture usage. To the case structure input, a button is connected. If the
button will have True state, two values will be added, else subtraction
operation will be performed.

In case of numerical value, string or enumerated type value con-
nected to the case selector, it is needed to prepare actions for all possi-
ble states. In practice one of the frames is selected as Default and will
be selected if any other condition is not met. In figure 45 an example
of case structure usage for creation of simple calculator is presented.
To the case selector, a numeric value is connected. In case of value
of Operation control, specific case frame will be executed, so different
numeric function will be selected like (addition, subtraction, multipli-
cation, division),

If selected frame should execute not in case of single value, but in
case of some range, so in case label one need to write range in such
format: starting value..ending value, e.g. for range starting from 0 to 100,
we should write 0..100.

Sometimes, it may happen that in frame of case structure there
will be no value which should be returned and empty tunnel will be
present. In such case program will not start, and we will get an error.
As a solution for this you can click right mouse button on such tun-
nel and select Use Default if Unwired option (an example is presented
in figure 46). In such case default value would be propagated to the
indicator. Default values for basic data types in LabVIEW are shown
in table 2.

For simple cases, instead case structure, one may use Select func-
tion, which have three input terminals. This function returns value
connected to True (top terminal), if a True value is connected to the

52 labview and open source solutions

Figure 44: An example of case structure
use with boolean value connected to the
case selector

introduction to labview 53

Figure 45: Simple calculator created
with a help of case structure.

Data Type Default Value
Numeric 0

Boolean FALSE
String empty ("")

Table 2: Default values of basic data
types in LabVIEW. Source of informa-
tion: "LabVIEWTM Core 1 Course Man-
ual" National Instruments, 2012.

54 labview and open source solutions

Figure 46: Simple calculator created
with help of case structure with not used
terminals.

introduction to labview 55

middle input terminal. While to the middle terminal a False value
would be propagated, so function will return a value connected to the
False (bottom terminal). An example of Select function usage is pre-
sented in figure 47.

Figure 47: An example of Select function
usage.

For loop

A for loop is used to execute some fragment of program multiple
times. It consists of: count terminal and iteration terminal. First of
them describes how many times the code inside the loop should be

56 labview and open source solutions

executed. While iteration terminal returns the number of finished iter-
ations starting from zero.

An example program which demonstrates for loop usage is pre-
sented in figure 48. To count terminal input a value of 10 is connected,
which means, that code inside the for loop will be executed 10 times.
On the beginning of each iteration in loop, a random function tosses a
value and passes it into input of chart of type: Waveform Chart.

Figure 48: An example showing for loop
usage, in which 10 random numbers are
generated and displayed in chart.Sometimes it is convenient to stop the for loop in example if er-

ror occurred or by user request. In such case, one need to click the
right mouse button on for loop border and select Conditional Terminal
option. Next to the newly created terminal, a logic value can be con-
nected. In this case a Stop if True terminal is chosen. So a for loop may
finish working during its repetitions if a True value is provided to con-
ditional terminal. If we would like to stop repetitions by False value, it
is needed to click the right mouse button on conditional terminal and
select Continue if True.

An example in figure 48 was modified by adding a stop button.
In the moment of button press by user, a for loop will end its work.
Modified version of example is presented in figure 49.

Default tunneling type for the for loop is Auto-indexing. It means
that, after connecting an array on for loop input, you don’t need to
add any value to count terminal. A for loop will execute exactly as
many times as there are elements in array and in every iteration of
for loop, next element of array will be available inside loop structure.
Described situation is present in example in figure 50. In this example,

introduction to labview 57

Figure 49: An example demonstrating
for loop usage. 10 random numbers are
tossed and displayed on chart. Program
may finish its work after pressing the
stop button.

in each iteration of for loop, a following value from array is read, and
random number is added to this value. Result is passed to input of
array named Output array which is placed outside for loop. As a result
of auto-indexing tunneling, results are accumulated on loop border
into the array and returned to Output array after finishing of for loop.

Figure 50: An example showing for loop
usage with auto-indexing tunnel.In case of arrays passed to for loop and a value passed to count

terminal of for loop, the for loop will execute the least number of both
conditions. In figure 51 an example is shown, in which two arrays are
connected to for loop and a value of 2 is connected to count terminal.
An Input Array consists of 4 elements and Input Array 2 consists of 3

elements. From these three numbers (4, 3 and 2 - count terminal), the

58 labview and open source solutions

least value is 2, so for loop will execute only two times.

Figure 51: An example showing for loop
working in case of multiple conditions
affecting total number of iterations.

In LabVIEW there are three modes of tunneling: Last Value, Indexing
and Concatenating. To change the tunneling mode, one needs to click
the right mouse button on tunnel and select Tunnel Mode option.

While Loop

A while loop is used to repeat a fragment of code until some condition
will be met. It consists of two terminals: Loop Indicator (which returns
how many times a while loop was executed) and Loop Condition (condi-
tion when while loop should end which accepts values True and False).
In figure 52, it is shown, that a loop finishes its work if on input Loop
Condition a True value is passed (in case of Stop if True option selected)
or False value is passed (in case of Continue if True option selected).

In figure 53 a while loop usage is presented. Program purpose is to
generate random numbers from limited range (0;5) and comparison of
them with user selected number. If both numbers are the same, pro-
gram should end his work and should return an array of all generated
values. In this program, a default tunneling mode was changed from
Last value to Indexing. In case of this first mode, program would return
last generated value only (which equals to user selected number). To
return all values, a Indexing tunneling mode is necessary.

In table 3 a comparison of two types of loops: for and while is pre-
sented.

For Loop While Loop
Executes N times or Stop if condition is executed
when condition occurs
Can execute 0 times Must execute at least once
Tunnel mode is indexing by default Tunnel mode is last value by defaultTable 3: Comparison of two types of

loops: for and while.

introduction to labview 59

Figure 52: A while loop.

Figure 53: Program generates random
number from range (0;5) as long as this
number will be equal to user selected
number.

60 labview and open source solutions

Event structure

Event structure is used to call a specific fragment of program in case
of an action, which will be performed by user, e.g. button click, mouse
hover over chart, pressing a key. This structure consists of: the Event
Selector Label, the Timeout terminal, the Event Data Node and the Event
Filter Node (presented in figure 54). The event selector label defines
event names, which are used in event structure. The timeout terminal
defines how much time event structure will wait for event. Default
value is -1, which means, that event structure waits forever for event.
If event structure with timeout equal to -1 will be set inside while
loop, then the next while loop iteration will not be started until the
event configured in event structure will occur. The event data node is
similar to cluster. It stores information about the event and its elements
will change according to the event.

Figure 54: Event structure.

To add an event to the event structure, one needs click the right
mouse button on the event selector label and choose Add Event Case....
A window presented in figure 55 will appear. In this window, in Event
Sources tree view, there are all objects which may be configured as
event sources. In Events tree view, there are all possible events that
an object can generate. In figure 55, an event “Value Change” was
configured to be generated, just when a value will change on button
Random.

In figure 56 a program, which toss a random number from (0;1)
range after Random button press is presented.

introduction to labview 61

Figure 55: Edit window for events in
event structure.

Figure 56: Program toss a random num-
ber from (0;1) range after Random button
is pressed.

62 labview and open source solutions

Flat Sequence

Flat Sequence gives possibility to control the order of operation ex-
ecution in LabVIEW. It consists of frames, which are executed one
after another. After selecting from function palette, flat sequence cre-
ates single frame. To add another frame, one needs to click the right
mouse button on flat sequence and choose Add Frame After, which is
presented in figure 57.

Figure 57: Flat sequence.

In figure 58 a program executing mathematical operation A · (A +

B) with use of flat sequence is presented. In the beginning, only left
frame will be executed, where A and B values will be added. Next the
right frame will be executed, where result from previous one will be
multiplied by A value.

Adding multiple frames in flat sequence will create big and un-
readable diagram, so it is important to limit flat sequence usage to
necessary minimum. However in such case control might be realised
with state machine design pattern. More on this subject in chapter .

subVI

Repeating fragments of program should be enclosed in subVI, which
is similar to function in textual programming language. In figure 59 a

introduction to labview 63

Figure 58: Program demonstrating flat
sequence operation.

program, which calculates the mean value from array elements Array
1 and Array 2 is presented. After mean value calculation, program
compares if the mean value from Array 1 is bigger than mean value
from Array 2. Using the Feedback Node on lower input of Add function
gives possibility to pass the result of addition from previous for loop
iteration to input of the function. In first iteration Feedback Node returns
0.

Figure 59: Program, which compares
mean values from two arrays.

Presented program is not optimal (block diagram is not clean visu-
ally), because for two arrays the same operations are duplicated. To
correct this, the reusable code fragment should be enclosed in subVI.
To do so, reusable code is selected and Edit → Create subVI option is
chosen. Created subVI is also used for the second array. The look of

64 labview and open source solutions

subVI is accordingly modified. The result is presented in figure 60.

Figure 60: Program, which compares
mean values from two arrays. Repeat-
able fragment of code replaced by subVI.

Another way to create subVI from existing VI is by connecting ter-
minals from connector pane. To do so, on front panel using wire spool
tool one needs to click the selected control or indicator and next on
free terminal of connector pane. After saving this VI, it can be put in
another VI (as a subVI) just by drag and drop technique - dragging the
subVI icon (top right part of window) to the block diagram of another
VI.

When creating subVI is it advised to use 4x2x2x4 (left side, top
side, bottom side, right side) connector pane pattern of terminals. It
is a convention that terminals on the left side are for inputs (there are
mostly controls connected) and terminals on the right side are outputs
(there are indicators connected). An error cluster by convention comes
into bottom left corner of subVI and goes out from bottom right corner.
A reference by convention comes into top left corner of subVI and goes
out from top right corner. In such way subVIs can be connected in
cascade way easily.

Sometimes created subVI is so general, that not always all input
terminals are used. It is a good practise to precise which terminals
are Required, Recommended or Optional. In case of this specification, fol-
lowing terminals will be displayed in different styles in context help
window. Required connections will be shown with bold text, recom-
mended connections will be shown in plain text and optional connec-
tions will be visible as dimmed text. In figure 61 a subVI with required,
recommended as well as optional terminals is presented.

introduction to labview 65

Figure 61: Context help window demon-
strating subVI with required, recom-
mended and optional terminals.

Time control

When a program controlling hardware devices is created, it is impor-
tant to control time between following steps, e.g. for setting parame-
ters of some specific oscilloscope one needs to wait about 100 ms be-
tween commands, which are sent. In such case functions from Timing
fold from function palette are needed.

Two basic functions for time control are: Wait (ms) and Wait Until
Next ms Multiple. First of them generates delay equal to specified value
on input (in milliseconds). In figure 62 an idea of Wait (ms) function
operation is presented, where a while loop with Wait (ms) function
inside is used. If parallel code execution (inside while loop) will take
more time than specified delay of Wait (ms) function, then following
iteration of while loop will start immediately just after finishing all the
operations in while loop frame. However if parallel code will take less
time then specified delay (e.g. 5 ms), so the next iteration would start
after 10 ms, just after finishing of Wait (ms) function.

Second function Wait Until Next ms Multiple waits for multiple times
of the time period specified on input. Idea of this function operation
is presented in figure 63. Code inside while loop will take 15 ms. So
function Wait Until Next ms Multiple will wait until first multiplication
of 10 ms possible to stop working. The nearest possible multiplication
of 10 ms is 20 ms (because parallel task will take 15 ms). So next
iteration of while loop will start after 20 ms of elapsed time.

Using both functions: Wait (ms) as well as Wait Until Next ms Mul-
tiple provides time to the processor to perform other tasks like e.g.
graphical user interface handling.

66 labview and open source solutions

10 ms 20 ms t [ms]

Wait
10 ms

 0 ms

Code inside
while loop
15 ms

Next iteration of
while loop
15 ms

Figure 62: Principle of Wait (ms) function
operation.

Figure 63: Principle of Wait Until Next
ms Multiple function operation.

introduction to labview 67

Figure 64: Basic functions to control time
available in LabVIEW.

68 labview and open source solutions

Besides basic functions to control time, there are other functions,
like so called express VI functions: Time Delay and Elapsed Time. First
of the works similarly to Wait (ms) function. However second of them
returns information, how much time elapsed from selected moment.
Both of them doesn’t provide time to the processor to perform other
tasks - this in contrast to the Wait (ms) and Wait Until Next ms Multiple
functions. Time control functions are presented in figure 64.

Charts

Charts allow visualization of collected data and their preliminary as-
sessment. In LabVIEW there are many different types of charts, which
are available in fold: Controls Palette → Graph. Most popular charts
are: Waveform Chart, Waveform Graph and XY Graph.

First of them displays real-time point by point, with points spaced
the same distance on the X scale. All points are stored in memory
inside Waveform Chart. In figure 65 three possible ways to visualize
data in Waveform Chart are presented:

1. Strip Chart - points are displayed continuously and X axis is shifted
from right to left, when chart is full. In this way new points appears
on the right side, and old points disappear on the left side of chart.

2. Scope Chart - points are displayed continuously and when chart is
full, new points start to appear on the left side, after cleaning whole
chart.

3. Sweep Chart - points are displayed continuously and new point is
separated from other points with red vertical line. When chart is
full, new points will appear on the left side, but it will replace old
data without cleaning whole chart.

To change the way of chart displaying one needs to click the right
mouse button on chart and select: Advanced→Update Mode.

As shown in figure 65, each point one by one are passed directly
to the input of waveform chart. However waveform chart allows also
adding more than one series of points. In such case one needs to
connect points from different series into cluster using Bundle function,
as shown in figure 66.

Next chart type is Waveform Graph, which displays whole series of
points instead adding point after point. The easiest way to add points
to waveform graph is to pass 1D array with points. They are added to
the chart starting from x=0 and incrementing x by +1 after each point.
Moreover waveform graph allows displaying points from any x value
and increasing x axis for any const value. In such case, on input of
waveform graph, one needs pass a cluster consisting of: x value, x

introduction to labview 69

Figure 65: Program that demonstrates
the different modes for displaying data
on Waveform Chart.

70 labview and open source solutions

Figure 66: Program that demonstrates
displaying two series of points on Wave-
form Chart.increment, 1D array of y values. Both methods are presented in figure

67.
It is possible to pass multiple point series to charts of waveform

graph type in different ways:

1. by passing 2D array, where in the first row there are points (y val-
ues) for the first series, in second row there are points (y values) for
the second series, e.t.c.

2. by passing a cluster, which consists of (placed in this order): x
value, x increment, 2D array of structure mentioned above.

3. by passing an array of clusters, which particular elements are: x
value, x increment, 1D array of y values.

4. by passing 1D array of clusters where each cluster consists of y
value array. This method is used mainly in cases where multiple
measurement series differ in number of points.

Methods of waveform graph creation with two series of data are
presented in figure 68.

The last from basic chart types is XY Graph, which allows to display
unevenly distributed points about the x axis (scatter plot). In other
words, both y and x values needs to be passed to the input of XY
Graph. Charts with one measurement series can be created in two
ways:

introduction to labview 71

Figure 67: Program that demonstrates
ways of data passing to chart of Wave-
form Graph type.

72 labview and open source solutions

Figure 68: Program that demonstrates
different ways of passing data to charts
of type Waveform Graph using points
from two measurement series.

introduction to labview 73

1. by passing cluster which consists of array of x values and array of
y values,

2. by passing array of clusters, where each cluster consists of two val-
ues: x and y.

Described methods of XY graph filling with data are presented in
figure 69.

Figure 69: Program that demonstrates
two ways of passing data to XY Graph.To add more point series to the XY Graph, one needs to:

1. pass an array of clusters with x and y arrays inside.

2. pass an array of clusters, where each cluster consists of array of
clusters with x and y values for one point.

Described methods of passing data to XY Graph with multiple point
series are presented in figure 70.

74 labview and open source solutions

Figure 70: Program that demonstrates
ways of data passing to XY Graph with
two point series.

introduction to labview 75

Shift Register

Shift register is used to pass values between one loop iteration and the
next iteration. To add the shift register, one needs to click the right
mouse button on the loop and select Add Shift Register. Shift regis-
ter consists of two terminals: left (which returns value from previous
loop iteration) and right (which receives value and passes it to the left
terminal in next loop iteration).

In figure 71 a basic program using shift register is presented. To the
right terminal of shift register a value from iterator is passed, where
from the left terminal a value is read and passed to result indicator.
To the left terminal an initial value equal to 0 is also connected. In
table 4 results shown in result indicator and values stored in terminals
of shift register are presented. Pay attention to the fact, that in “0”
loop iteration, result indicator takes the 0 value, because this was the
initial value connected to the left terminal. In “1” loop iteration, re-
sult indicator still takes the 0 value, because to the right terminal a 0

value was passed in “0” loop iteration. Running this program multi-
ple times doesn’t change the behaviour, because shift register is always
initialized with 0 value.

Figure 71: Program that demonstrates
principles of shift register operation.

i left terminal result indicator right terminal
0 0 0 0

1 0 0 1

2 1 1 2

Table 4: Values stored in shift register
and in indicator after starting the pro-
gram presented in figure 71.

In figure 72 a program using two shift register is presented. In both
cases to the right terminal of shift register, a result from addition of

76 labview and open source solutions

two numbers: value from left terminal and for loop iterator is passed.
Upper shift register is initialized with 0 value, which means, that al-
ways after starting the program, the left terminal will return 0 value.
However in bottom shift register, the left terminal is not initialized.
Used here is the fact that the shift register remembers the last value
passed to the shift register from the previous program run and is is
the initial value the next time you start the program. The situation
described is best demonstrated by the results from table 5.

Figure 72: Program that demonstrates
principles of shift register operation
without initial value specified.

First program run
i left terminal result 1 indicator right terminal left terminal result 2 indicator right terminal
0 0 0 (0+0) 0 0 0 (0+0) 0

1 0 1 (0+1) 1 0 1 (0+1) 1

2 1 3 (1+2) 2 1 3 (1+2) 3

Second program run
0 0 0 (0+0) 0 3 3 (3+0) 3

1 0 1 (0+1) 1 3 4 (3+1) 4

2 1 3 (1+2) 3 4 6 (4+2) 6

Table 5: Values stored in shift registers
and indicators after starting the program
presented in figure 72.Shift register can also pass values from several previous iterations.

introduction to labview 77

In such case, one needs to grab the left terminal of shift register and
stretch it to the desired number of terminals. In figure 73 a program
with left terminal of shift register stretched to 3 terminals is presented.
The top terminal will return value from i-1 for loop iteration, middle
terminal will return value from i-2 for loop iteration and bottom ter-
minal will return value from i-3 for loop iteration. In table 6 results
from running the program are presented.

Figure 73: Program that demonstrates
principle of shift register operation with
several terminals.

i result i-1 result i-2 result i-3 right terminal
0 0 0 0 0 (0+0)
1 0 0 0 1 (0+1)
2 1 0 0 2 (0+2)
3 2 1 0 3 (0+3)
4 3 2 1 5 (1+4)
5 5 3 2 7 (2+5)

Table 6: Values stored in shift register
and in indicators after starting the pro-
gram presented in figure 73.

78 labview and open source solutions

Control of Graphical User Interface

Property Nodes

Property Nodes allow access to object properties from the level of block
diagram. It is a tool particularly useful in situations, where there is
a need to change object properties depending on the input data. For
example if we measure ambient temperature with temperature sensor
and we display the result on the chart and we would like to change
color of the line from green to red when maximal allowed temperature
is exceeded. In such situation, we can use property nodes. Another
example is when we protect certain data with a password, if the user
enters the correct password, the program reveals hidden data fields.

Figure 74: Property Node creation.

All control and indicator properties, which may be changed with
use of property window or context menu may also be changed pro-
grammatically with use of Property Nodes. To create Property Node, one

introduction to labview 79

needs to click the right mouse button on control or indicator termi-
nal, and choose from menu Create → Property Node option, which
is presented in figure 74. Next from a list interesting property should
be chosen. Each control has properties assigned hierarchically - start-
ing from general properties, common to many different objects, and
ending with specific properties.

After choosing particular property, specific property node terminal
will be created, which is by default only for reading. To write a value
to such property, one needs to click the right mouse button on property
node terminal and next choose Change to Write.

An example program using property node is presented in figure
75. Depending on the value selected from the Slider, filling of the
Slider will change its color to one of two possible: green or red. If
value will be higher then 5, the red color will be passed to Fill Color
property node and thus filling of the slider will change its color to red.
Otherwise filling of the slider will be in green color.

Figure 75: An example program with
use of Property Node.In many applications more than one property of particular object

needs to be modified. In such case, there is no needed to create
two separate terminals of property node, but existing terminal can
be stretched to add more positions. By default, next visible terminals
will appear as following from property node list. To select interesting
property, one needs to hover mouse pointer (in the form of hand) over
undesirable property terminal and after clicking the right mouse but-

80 labview and open source solutions

ton, select the desirable property. An example is presented in figure
76.

Figure 76: An example of property node
with two property terminals usage.

Not all property nodes allow to write and read its values. Some
properties are only for reading, e.g. Label, and some only for write, e.g.
value signaling property. Some object properties are stored in clusters,
e.g. control position in window, so to read the position of a control,
a unbundle function is needed. However to write such property, first
a cluster have to be created, and then should be passed to specific
property node.

Invoke Nodes

Invoke nodes are used to call methods on objects. In contrast to property
nodes, one invoke node can only implement one method. First element
in invoke node terminal is a method name, then method parameters
are displayed: required on white background and optional on gray
background. If a method returns a value, then invoke node will have
terminal which returns a value. An example invoke node is presented
in figure 77.

To create invoke node, one needs to click the right mouse button on
specific object and select Create → Invoke Node. From displayed list
an interesting method should be selected. The Invoke Node creation
method is shown in figure 78.

Control References

Methods of creation of Property Nodes or Invoke Nodes described
above bind a given object positioned on the front panel with specific
terminals of property nodes or invoke nodes on the block diagram.
In this case we are talking about implicitly linked property nodes or

introduction to labview 81

Figure 77: An example of Invoke Node.

invoke nodes. In case of subVI creation we will lose such link of prop-
erty/invoke node with given object. We can solve this problem with
use of a reference to object.

If subVI is created by selecting specific part of block diagram, and
next selecting Edit→ Create SubVI, then references to objects will be
automatically created. But if subVI is created by saving a VI to a file,
a property node from functions palette must be created. In such case
select: Functions palette→ Programming→ Application Control→
Property Node. Next click the right mouse button on object, which
you want to bind with property node and select Create → Reference.
The created reference connect to the upper input of property node
terminal and next select interesting property for read or write. An
example is presented in figure 79. Such created property node is called
explicitly linked property node. Described method may also be used
for invoke node creation.

Variables

Local Variables

Local variables are usually used to pass data between parallel loops.
To better understand their operation, let’s consider the following case.
In figure 80 a program is presented, which generates two cosine wave-
forms with different frequencies. Both while loops should end their
work after pressing a stop button. However, is this really happening?

The stop button is placed outside of while loop on block diagram.
So its value is passed only once on the beginning of program. If user
clicks the button in the next iterations of while loop, the changed value
from stop button won’t be passed inside the loop. In this way two
loops working indefinitely were created. Therefore the question arises,

82 labview and open source solutions

Figure 78: Invoke Node creation
method.

introduction to labview 83

Figure 79: An example of creation of ex-
plicitly linked property node.

Figure 80: Program that demonstrates
generation of two cosine waveforms
with different frequencies. Both loops
should end their work in the moment of
stop button press. Attention: This so-
lution is not correct! It is here only for
didactic purpose.

84 labview and open source solutions

whether it is enough to move the stop button inside one of while loops,
which is presented in figure 81?

Figure 81: Program, which demon-
strates generation of two cosine wave-
forms with different frequencies. This is
next potential solution. Attention: this
solution is also not correct! This exam-
ple is for didactic purpose only.

In this solution, while loop generates cosine waveform and fills the
Cosine 1 chart. The right loop doesn’t start because it still waits for
input logical value on terminal connected to stop button. After clicking
the stop button, left while loop ends working and sends a True value
to right while loop, which enables it to work. Right while loop will
work only single iteration, because the condition to end the loop is
met. Therefore how to pass the state of the stop button on an ongoing
basis to the right while loop? That’s what local variables are used for.
They allow to read or write a value from a given control or indicator
placed on front panel in many places on the block diagram.

One of the methods to create local variable is to click the right
mouse button on control or indicator and select Create → Local Vari-
able. The correct solution to the discussed case is shown in figure 82.
Stop button control is connected with stop condition of the left while
loop, and created local variable to stop button control is connected
with stop condition of the right while loop. By default, created local
variable is in write only mode. To read from local variable, one needs
to click the right mouse button on local variable and choose Change to
Read. It is important, that if we use local variable with a button, then
mechanical action of the button needs to be switch.

Local variables are useful in communication between parallel loops,
however they have a major disadvantage. Let’s assume, that in one
loop we would like to increase the value from Numeric control by 1,
and in other loop to decrease the value by 1. For ease of reference
the result is also placed on the chart: Value. In each loop a delay was
added. If delays are the same, the Numeric control should have value
equal to 0. Numeric control value is shown in figure 83.

Not always Numeric value is first incremented by 1 and later de-

introduction to labview 85

Figure 82: Program which generates
two cosine waveforms with different fre-
quencies. Correct solution of stop but-
ton.

Figure 83: Program, which demonstrates
race condition phenomenon.

86 labview and open source solutions

creased by 1. If delay in one loop will change, the more difficult will
be to predict, which loop will finish first. Thus, we see, that we are
not able to predict what value will be on Numeric control. Such phe-
nomenon is called “Race Conditions” and it is the result of lack of
control on data flow. To prevent such situation, avoid writing value to
control or indicator in many places of the program.

Global Variables

Local variables may be used in single VI only. To pass data between
different VIs, a global variable is used. To create global variable, one
needs to select Functions palette → Structures → Global Variable. Next
click the left mouse button on created terminal. A global variable
front panel will open. Given global variable may consists of single
or multiple objects. Objects are added to global variable from controls
palette just as on any VI front panel. After saving global variable and
clicking again on its terminal, a list with available objects will be visible
as shown in figure 84.

Figure 84: An example list of objects put
in single global variable.

In figure 85 a program using global variable is presented. In first
VI, sinus waveform is generated and passed to global variable named
Sine Chart. Moreover from Stop global variable, a logic value is read
and passed to stop condition of while loop. Second VI is similar, but
generates cosine’s waveform. Third VI consists of enum, in which
user selects, which waveform is displayed on Waveform Chart named
Plot. On block diagram, an enum value is read. In case of selected
waveform, different case structure frame will be executed. For each
waveform in case structure frame, a chart is read from global variable.
Moreover stop button value is passed to global variable to stop all VIs
in the same time. Outside while loop there are icons of two other VIs,
just to run them in the same time as main VI.

introduction to labview 87

Figure 85: Program, that demonstrates
passing different waveforms from VIs to
main VI with use of global variables.

88 labview and open source solutions

Shared Variables

Shared variables are used to pass data between different VIs in the
same project and also to pass data between different devices connected
through network.

When such variable is being created, a name and a type (presented
in figure 86 and 87) must be defined. Write or read from shared vari-
able is possible by dragging icon of global variable from project win-
dow to block diagram of given VI. By default shared variable is for
read only. To make it writable, one needs to click the right mouse
button on shared variable, and then select Access Mode→ Write.

Figure 86: Shared Variable creation.

Shared variables should be used with care, because their usage
don’t imply the order of program execution. Because of this, when
shared variables are used some not intended behaviour may happen
like, e.g.:

• reading twice the same value from shared variable

• miss of shared variable value change

Functional Global Variables

Functional Global Variable (FGV) is a variable built on subVI with shift
register basis. It uses the fact, that shift register stores value from last
time running. Functional Global Variable besides value storing may

introduction to labview 89

Figure 87: Shared Variable property win-
dow.

90 labview and open source solutions

also perform operations on data, like changing its format (e.g. we can
pass a scalar value to FGV, and read an array of data from FGV).

Functional Global Variable consists of while loop with shift register
and case structure, which is shown in figure 88. A while loop has
stop condition connected to constant true value - so, the code inside
while loop will run only once when such subVI will be executed with
variable. While loop is used to create shift register, which stores the
data. FGV variable besides data values also may accept commands,
which are realized as type definition (strict type definition) for enum
type. Basic three commands realized by Functional Global Variable
are: initialization, write, read. In practice Functional Global Variables
frequently have other commands defined, as data analysis, write to
file, change data format, e.t.c.

Figure 88: Functional Global Variable.

FGV variable is one of two most popular ways of protection of criti-
cal diagram parts from race conditions phenomenon, because FGV vari-
able is non-reentrant VI. In practise, this means, that there is single
place in memory, where data from subVI are stored. Such subVI can-
not be run parallel. Other threads must always wait when such subVI
will finish then they can call it.

When Functional Global Variable is created, it is worth to remember
about some shortcuts in LabVIEW. After clicking the Case structure,
there is an option “Add case for every value”, which allows for auto-
matic creation of all cases in structure.

introduction to labview 91

Write and read from files

In many situations it is necessary to read or write data to files. Every
operation on file consists of three steps: open/create file, read/write
data, close reference to file. Operation schema is presented in figure
89.

Figure 89: Schema of operation on file.

In LabVIEW it is possible to read and write data to following file
formats: Binary, ASCII, LVM and TDMS. Two latest file formats are
characteristic for LabVIEW. First of them (LVM) is based on ASCII
file format, in which elements are separated by tabs. Such design
makes loading the file to the Spreadsheet easier. TDMS file is designed
by National Instruments and is based on binary file format. Besides
values (data) it also stores object properties.

Available functions to work with files in LabVIEW are divided in
two categories:

1. High-Level File I/O - consists of functions, which take three steps
of file operations in one block. There is no need to open file sepa-
rately, read/write and close reference to file. High-Level functions
are convenient to use, however they are less effective.

2. Low-Level File I/O - consists of functions, to realize particular steps
of file operations. These functions are much more effective and they
are recommended in situations, where speed of data read/write has
high importance.

The High-Level File I/O includes: Write Delimited Spreadsheet,
Read Delimited Spreadsheet, Write To Measurement File and Read
From Measurement File. In figure 90 a program, which toss 5 random
values and write them to text file with use of Write Delimited Spreadsheet
is presented. Results from text file are read then with Read Delimited
Spreadsheet function and passed to array. Notice that all three steps:
file creation, write/read and file reference close are realized by single
function.

92 labview and open source solutions

Figure 90: Program, that writes random
numbers to text file, then read them from
file with use of High-Level File I/O func-
tion.

Functions: Write to Measurement File and Read From Measurement
File works in similar way to Write/Read to Delimited Spreadsheet.
The difference is that, we use them to write data in LVM or TDMS in
contrast to ASCII file.

In figure 91 analogous program to presented in figure 90 is pre-
sented, but with use of Low-Level File I/O functions. As it is seen,
code size is bigger, however speed of write and read operations is also
higher.

Error handling

Important part of every professional program is correct error handling.
User can generate many errors, e.g. give value outside allowed range,
give path to non-existing file or divide numerical value by 0. In Lab-
VIEW there are two types of error handling: automatic and manual.
Automatic error handling is used by default and as it is triggered, it
stops program run, highlights function/subVI, which caused an error
and displays error list. Second possibility is to use manual error han-
dling, which is used in example presented in figure 91. It uses error
cluster, which is propagated through all functions having such possi-
bility, e.g. Open/Create/Replace File, Write to Text File, e.t.c. When
error occurs, program will not stop immediately, but error code and
description of error will be passed in error cluster to the final error
handling function e.g. Simple Error Handler, which will display infor-
mation about error in the form of a dialog window.

Error cluster consists of: status (logic value), code (32-bit integer)
and source (string). Status become True if error occurred or False if
warning occurred. Every type of error has its individual error code.

introduction to labview 93

Figure 91: Program, that writes random
numbers to text file, and then it reads
them from file with help of Low-Level
File I/O functions.

94 labview and open source solutions

Error clusters can be joined, by Merge Error function, which returns
only first error or warning. It doesn’t return full information about
several errors. More examples about manual error handling are pre-
sented in section State Machine ().

Design patterns

Every professionally written program uses design patterns. In Lab-
VIEW there are some important design patterns, which should be
known by programmers. Most popular are: State Machine Design Pat-
tern, Master/Slave Design Pattern and Producer/Consumer Design
Pattern.

State machine

State machine consists of while loop, case structure with enum type
connected to case selector and shift register. As an example of state
machine usage, we will use washing machine simulator, which block
diagram is presented in figure 92.

Figure 92: Block diagram of washing
machine simulator.

Following states of washing machine are put in separate frames of
case structure. An enum has a list of all states, and shift register is
used to pass next value from enum to the input of case selector. Using
a state machine allows to control execution of program step by step.
Moreover each step is divided, so it reduces the space taken by code
on block diagram and makes code better readable.

In figures 93, 94, 95, 96, 97 and 98 following states of washing ma-
chine simulator are presented. To display, which state is actually ex-
ecuted, a cluster with LED diodes (logic values) is used. Moreover
Water Level numerical indicator is used, which simulates filling wash-
ing machine with water. Then there is Time indicator, which displays
elapsed time in each state. Presented example is only simulation, how-
ever it demonstrates very well the idea of state machine design pattern.
In practice, state machine design pattern is used very often. State ma-
chine may be use e.g. for reading data from some measurement device
in one state, than in another state it may analyze and visualize data.
On next state the data might be saved to file.

introduction to labview 95

Figure 93: Implementation of Start state
of washing machine simulator.

96 labview and open source solutions

Figure 94: Implementation of Filling Wa-
ter state of washing machine simulator.

introduction to labview 97

Figure 95: Implementation of Washing
state of washing machine simulator.

98 labview and open source solutions

Figure 96: Implementation of Rinsing
state of washing machine simulator.

introduction to labview 99

Figure 97: Implementation of Spinning
state of washing machine simulator.

100 labview and open source solutions

Figure 98: Implementation of Stop state
of washing machine simulator.

introduction to labview 101

Master/Slave Design Pattern

To communicate between parallel loops a local variable might be used.
However it has significant disadvantage. If two loops are executed
with different frequencies, the race condition phenomenon occurs. One
of alternatives to local variable is notifier - a tool to synchronize two
independent processes. It works similar way as local or global vari-
ables. In one place a value is passed to notifier, and in another place a
value is read. But working of loop, where a value is read from notifier
is hold until data arrives to notifier.

In figure 99 an example program showing differences between local
variable and notifier work principles. In upper loop a sinus waveform
is generated and passed to Sine 1 chart and to Value indicator. More-
over, a notifier is created with use of Obtain Notifier function, and in the
middle of upper loop sinus value is passed to notifier with use of Send
Notification function. In the middle loop a value from Value indicator
is read with use of local variable and passed to Sine 2 chart. In lower
loop a Wait on Notification function is used, which holds the while loop
until new data are added to notifier in upper loop. Next it passes read
data to Sine 3 chart. Also in each loop a delay is added. Wherein the
upper loop has a larger delay then the other two. As seen in figure 99,
local variable from time to time reads twice the same value and Sine2
chart differs significantly from Sine 1 chart. On the other hand Sine 3
chart is identical to Sine 1 chart, because lower while loop is in hold
until next value appears in notifier, so there is no risk of reading the
same value multiple times.

Because of a feature of synchronization of multiple while loops with
use of Notifier, it is used in Master/Slave design pattern. This design
pattern is used when there is a need of performing some actions in
parallel and with different frequencies. Master/Slave design patter
consists of only one master loop and one or multiple slave loops. Mas-
ter loop controls of slave loops operation and communicates with them
through Notifier. Each loop realizes separate task, what makes the pro-
gram more modular. Master/Slave design pattern is so popular, that
there is no need to create it from scratch, but you can use a ready-made
template, which is presented in figure 100. To do so, a File → New →
From Template → Frameworks → Design Patterns → Master/Slave Design
Pattern should be chosen.

Master/Slave design pattern is frequently used in cases, where in
master loop, a graphical user interface is processed, and in slave loops
data is processed, backed or commands to external devices are sent.
However presented design pattern has a major disadvantage: slave
loops always must work faster then master loop, because notifier doesn’t
have a data buffer.

102 labview and open source solutions

Figure 99: Program that demonstrates
difference of operation of local variable
and notifier.

introduction to labview 103

Figure 100: Master/Slave Design Pattern
template.

104 labview and open source solutions

Producer/Consumer Design Pattern

In previous chapter, a notifier was described, which has no data buffer.
As an alternative to notifier is a queue, which works as FIFO (first in,
first out) buffer. Data, which enters the queue first, will also leave the
queue first, which is shown in figure 101. In the queue, any data types
can be stored.

Figure 101: Principle of FIFO buffer op-
eration.

Basic functions used to create and operate the queue (presented also
in figure 102) are:

• Obtain Queue - Queue initialization. It returns a reference to queue.

• Enqueue Element - Adds an item to the end of queue.

• Dequeue Element - Returns and removes the currently read item
from the queue.

• Preview Queue Element - Peek on next item in queue, without
removal.

• Get Queue Status - Returns actual number of items in the queue.

• Release Queue - Releases a reference to the queue.

To understand the difference between notifier and queue, another
loop is added to the example in figure 99. A queue was created wit
use of Obtain Queue function. Next in upper loop, a sinus value is

introduction to labview 105

Figure 102: Basic functions to operate
the queue.

passed to the queue with use of Enqueue Element function. In bottom
loop a Dequeue Element is used, which holds loop operation until there
are data to read. To observe the difference between the notifier and
the queue, delays are changed. Upper loop has two times less delay
than lower loops. The finished program is presented in figure 103.
After starting the program, it is visible that charts: Sine 2 and Sine
3 have two times less points than Sine 1 chart. Local variable and
notifier doesn’t have a data buffer, which causes data loss (these loops
do not manage to read data before overwriting it by the upper loop).
However the queue has a buffer and as a result Sine 4 chart obtain all
points generated in upper loop, but it takes some time.

Therefore, the queue is an effective tool to synchronize two loops in-
dependently of their frequency of operation. The Master/Slave design
pattern has been modified by replacing notifier with queue. Such new
design pattern is called Producer/Consumer Design Pattern. To cre-
ate such design pattern, one needs to select File→ New→ VI→ From
Template→ Frameworks→ Design Pattern. On the list there will be two
variants of Producer/Consumer design pattern called Data (presented
in figure 104) and Events (presented in figure 105).

Producer/Consumer design pattern is based on two loop types:
Producer Loop and Consumer Loop. First of them is used to “pro-
duce” data, e.g. reading data from measurement device. Second loop
is used to process data, e.g. data analysis and visualization on charts.
Communication between loops is provided by queue, which enables
data buffering. Additionally, loops can work in different frequencies,

106 labview and open source solutions

Figure 103: Program that demonstrates
the difference between local variable, no-
tifier and queue.

introduction to labview 107

without worrying on data loss. Using Producer/Consumer is partic-
ularly recommended in data acquisition and data processing on de-
mand. However there is one drawback, only one consumer loop can
be used together with producer loop, this is because of buffer usage.

Figure 104: Producer/Consumer (Data)
Design Pattern template.

Producer/Consumer (Event) design pattern is a modification of pre-
viously presented design pattern by adding event structure to the Pro-
ducer loop. This modification is used to process data on user de-
mand. Using Producer/Consumer (Event) design pattern makes pro-
gram more responsive (in sense of interactivity with graphical user
interface).

108 labview and open source solutions

Figure 105: Producer/Consumer (Event)
Design Pattern template.

introduction to labview 109

Code documentation

Well prepared code documentation allows multiple programmers to
work on the given project and allows program extension after many
months. Code documentation should consists of following informa-
tion: ideas, procedure descriptions, reference materials.

A list of useful elements for creating documentation:

1. Labels:

• description of functionality of controls/indicators,

• displayed in Context Help window and connector pane,

• the name should include the default value and unit,

• if control has limited range, please insert the free label to inform
user about it.

2. Captions:

• additional description of control/indicator functionality, which
is displayed only on front panel,

• use caption to describe functionality of controls/indicators and
short label to save space in block diagram,

• caption appears as tip strip in Context Help window.

3. Tip strip - additional description on yellow block, when user is fo-
cused on control/indicator.

4. VI properties should include the following items:

• An overview of the VI

• Instructions for using VI

• Description of inputs and outputs.

5. Free labels and comments

6. Wiring description

LabVIEW interfacing techniques

Main goal of LabVIEW environment is to create an easy, cost effec-
tive way to produce professional grade applications for controlling
measurement equipment. National Instruments LabVIEW is a real
companion for scientists and engineers. Thanks to broad set of com-
munication functions, analysis and visualization tools it makes almost
perfect environment for rapid application development, testing and
deployment. Ways of controlling hardware with use of LabVIEW en-
vironment are presented in this chapter.

Many commercial equipment like multimeters, oscilloscopes, gen-
erators, e.t.c. already have libraries to communicate with devices us-
ing LabVIEW environment. Typically there are functions to: initial-
ize equipment, configuration of operation mode, then there are loops
which control continuous work e.g. data acquisition. It can be pre-
pared in design master/slave or producer/consumer design pattern.
And finally at the end, one needs to close device and pass information
about errors. The typical program structure for accessing hardware
(measurement device) is presented in figure 106.

Open
Initialize

Create resource

Read/Write
to resource

refnum created

while loop

Close resource Error handlingrefnum deleted

Figure 106: Typical program structure
for accessing hardware

Drivers

The term drivers applies to distributed by National Instruments or
third party LabVIEW functions (blocks) which are used for control of
hardware devices connected to PC. This is the most convenient option,
because such functions are specific and optimized for devices and are
easy to use - user needs to drag and drop them on block diagram and
connect wires. Frequently example applications using these drivers are

112 labview and open source solutions

also supported which allows for rapid development of any function-
ality user demands from data acquisition system. If such drivers are
installed, they new functions appear in the Function Palette and are
available to users. National Instruments devices have well defined in-
terface for measurement equipment which is called DAQmx. Knowing
how to use such drivers, user can practically program whole spectrum
of available devices. In National Instruments portfolio there are also
highly modular devices like CompactRIO, real-time controllers which
use internally real-time Linux kernel. LabVIEW program can be easily
deployed on such device.

Nowadays many vendors of measurement equipment prepare Lab-
VIEW functions (blocks), which helps a lot in development of measure-
ment system. Of course we can expect support of National Instruments
on such drivers for National Instruments produced devices, however
in third party products it may be quite different. Bear in mind, that
sometimes support only applies to specific versions of LabVIEW and
some old drivers may not work in new environment or vice-versa. This
is quite problematic in third party products.

To control hardware devices, common practise for good hardware
vendors is to distribute C language libraries (drivers) for PC computer
for their devices. These libraries consists of functions which can con-
trol every aspect of the device. The C API is a standard. So sooner
or later, users who deal with measuring system software need to read,
understand and write C code. In some areas, C++ code is also used,
however C++ is not the best solution for such low-level software, be-
cause of its complexity of object oriented programming and different
calling convention from C (symbol naming is mangled in compiled
code). This is why in C++ we need to export functions as extern “C”
if we want to cooperate with other code. In C++ we need to prepare
“proper interface” if we want to make such code usable from other
languages like LabVIEW also.

But what to do, if we don’t have already prepared LabVIEW func-
tions in third party product? There is a way of calling C functions in
LabVIEW, which can be used for preparation of such interface. This
will be explained in following chapter.

Calling external libraries

To call a function in external library, one need to know the name of
function, and types of all function arguments and type of return value
and use Call Library Function Node function, which is available in Func-
tions Palette → Connectivity → Libraries & Executables → Call Library
Function Node. Context help window for this function is presented in
figure 107

labview interfacing techniques 113

Figure 107: Context help window for
Call Library Function Node.

An example program which uses a function from external library is
presented in figure 108. There, in function Call Library Function Node
a names option was chosen in right click menu, to show on block
diagram the name of function and names of arguments and return
value.

In this example a LabVIEW for Linux (version 2017) was used.
However it works almost the same on Windows platform. One visible
difference is that external shared libraries on Windows are called “Dy-
namically Linked Libraries” and have a .dll suffix, whereas on Linux
they are called “Shared Objects” and have a .so suffix.

Having a library it is not enough to use it. First we need to know
what functions we need to use, how they should be called, in which
order, what data structures should be prepared and how. In simple
cases it is easy, but in complex situations, documentation to library is
needed badly. It is also important to have header files for library (with
.h suffix). This will help to reveal function signatures and argument
types.

LabVIEW has limited possibilities of argument types we can use to
call functions and receive return values. If e.g. library functions pass
structures, then you will need to prepare some kind of a wrapper -
another library prepared in C language by you, that will accept sim-
ple arguments from LabVIEW and communicate with functions from
problematic library. These however exceeds topic of this book. If li-
brary is big and complicated, the work to interface LabVIEW with ex-
ternal library functions may be tedious and time consuming. However
calling functions from external libraries may be the fastest method to
acquire data from hardware devices. Accepted types of return values

114 labview and open source solutions

Figure 108: Program demonstrating use
of Call Library Function Node.

labview interfacing techniques 115

in LabVIEW are: void (no return), string and numeric. Numeric types
can be further configured as:

• Signed 8-bit Integer

• Signed 16-bit Integer

• Signed 32-bit Integer

• Signed 64-bit Integer

• Signed Pointer-sized Integer

• Unsigned 8-bit Integer

• Unsigned 16-bit Integer

• Unsigned 32-bit Integer

• Unsigned 64-bit Integer

• Unsigned Pointer-sized Integer

• 4-byte Single (Float)

• 8-byte Double

In case of string type, we have then an option of:

• C String Pointer

• Pascal String Pointer

• String Handle (not available in Linux)

• String Handle Pointer (not available in Linux)

Pascal String has length specifier and in classic definition has max. 255

chars, however, to create C-string (which is an variable array of chars,
ended with zero value char), LabVIEW may need to preallocate some
memory in their specific string type. In such case we can give a hint
to LabVIEW specifying “Minimum size” in chars (bytes).

To configure Call Library Function Node one needs to click the right
mouse button on Call Library Function Node and choose Configure...
from menu. In fold Function Library or path should be filled to point
the external library (.dll in Windows or .so in Linux). A function name
should be also chosen there. On the bottom of window a function pro-
totype is displayed. In windows version there is also Calling convention
selection, where C uses __cdecl calling convention (standard C) and
stdcall (WINAPI) used e.g. on Windows GUI libraries. There is also a
thread select radio button. It is important to select if called functions
should run in UI (User Interface) thread (which may be blocked if such

116 labview and open source solutions

Figure 109: Configuration of Call Library
Function Node. Function fold.

function takes time) or any other thread. This configuration window
is present in figure 109.

Then we need to specify function return value and its arguments,
which is presented in figure 110 and 111. Each item can be added by
clicking the black “plus” button and deleted by the red “cross” button.
Items can be also arranged up and down using buttons with arrows.

In case of arguments, we have an option to pass data by Value or
by Pointer to Value. The second option, allows function to modify the
value, which is passed from LabVIEW side (some place in memory,
which pointer points to it). That is why, in Call Library Function Node,
we have an option to write argument (left side) and read it (right side)
of icon.

If someone wants to prepare a wrapper in C, there is also a con-
venience option in right click menu, which allows to save prototype
functions to C file, so you can then use these to prepare and compile
correct wrapper.

Range of argument types is broader. There are following types:
Numeric, Array, String, Waveform, Digital Waveform, Digital Data,
ActiveX, Adapt to Type, Instance Data Pointer. However most of them
are types defined and used in National Instruments libraries e.g. in
LabWindows/CVI. In case of Array, we also need to specify dimen-
sion, data type (of single cell), array format(whether it is Array Data
Pointer, Array Handle or Array Handle Pointer and Minimum size.

C code for library used in example is presented in listing 3. This is
accompanied with header file in listing 2 and Makefile in listing 1 to
easily compile under GNU/Linux system with use of GCC compiler.

labview interfacing techniques 117

Figure 110: Configuration of Call Library
Function Node. Parameters fold (return
value).

Figure 111: Configuration of Call Library
Function Node. Parameters fold (argu-
ments).

118 labview and open source solutions

Similarly it can be prepared under Windows environment using Open
Source tools such as MinGW or Cygwin or using closed source tools
like Microsoft Visual C compiler. In our example if we build exam-
ple library by invoking make command, we should get ready shared
object library: myadder.so. This can be then specified in Call Library
Node which is shown in figure 109. After specifying return value and
argument type, which is present in figure 110 and 111 test program is
almost ready. The complete example is presented in figure 108. If we
run the program, we can see that LabVIEW calls the external library
function, and whatever number we enter to “value” control, we will
get value increased by 2 in “return type” indicator. This is how a very
simple C function from the external library works.

Listing 1: Makefile : Makefile for example external library

myadder.so: myadder.o

gcc -shared -o myadder.so myadder.o

myadder.o: myadder.c

gcc -c -Wall -Werror myadder.c

.phony: clean

clean:

rm -f myadder.so myadder.o *~

Listing 2: myadder.h : Header file for example external library

#ifndef _MYADDER

#define _MYADDER

extern int add2(int value);

#endif

labview interfacing techniques 119

Listing 3: myadder.c : C source file for example external library

#include "myadder.h"

int add2(int value){

return value+2;

}

Executing system commands

Sometimes we can get or prepare external program which will com-
municate with hardware or prepare complex calculations, simulations,
e.t.c. If such program can accept command line parameters and can
return data to standard output, we can use another LabVIEW function
to call such a program or any other tool available in system, which
is named System Exec. This function looks more comfortable if option
“View as icon” in right-click menu is disabled. Then we can expand
named fields, where command line is just a command line one could
use in terminal window to run this command. If we want to pass
something to the running program, we can do it via standard input
field. Results from program can be viewed from standard output or
standard error depending on message nature and program design. This
will work if wait until completion is enabled (default behaviour). Finally
there is error code output, which is of integer type and is a normal re-
turn code from any program which is executed in system. This may be
used for diagnostics. In System Exec function we can also specify work-
ing directory which will be used by program, expected output size which
may improve memory efficiency (this should be more than actual size).
Default value is 4096 characters (bytes). We have also typical in Lab-
VIEW error cluster input and output. An example program which
calls “ls” - standard command to list files in directory on GNU/Linux
system is presented in figure 112. Similar results could be achieved
on Windows platform with use of “dir” command. Consider also call-
ing shell scripts which will actually run programs. The possibilities
are virtually limitless, e.g. is possible, to run Windows program, using
“Wine” environment and execute it from “LabVIEW for Linux”. These
possibilities are really great for engineers who interface between Open
and Closed Source solutions.

VISA

Sometimes measurement equipment doesn’t have drivers in LabVIEW
or C library, but has well defined interface and well defined format of

120 labview and open source solutions

Figure 112: Program that demonstrates
calling another program using System
Exec function in LabVIEW. Here an “ls”
command is called on GNU/Linux sys-
tem.

data transmission. Together with device manual, user can easily pro-
gram such device using ready LabVIEW functions for communication
over several interfaces like:

• Serial

• Parallel

• GPIB (IEEE-488.2)

• VXI

• Ethernet

• USB

Also standardized protocol for communication with measurement
equipment was developed. It is named SCPI for Standard Commands
for Programmable Instruments.

In LabVIEW there is a special High Level API (Application Pro-
gramming Interface) called VISA (Virtual Instrument Software Archi-
tecture) which is a common way to access different hardware interfaces
like Serial, Parallel or GPIB. In VISA toolkit, which is placed in Func-
tion Palette→ Instrument IO→ VISA, there are common functions like
Write, Read and specific for bus (interface) are placed in Advanced →
Bus specific.

Although there are many interfaces which could be used to commu-
nicate with equipment, the most simple interface, which can be used
for Open Source projects easily is actually a Serial interface. Many

labview interfacing techniques 121

boards like Arduino, although connected via USB interface, in real-
ity uses CDC (Communication Device Class) which is recognized and
used by system as typical Serial interface. In VISA for every device on
every interface there is unique identifier called Instrument Descriptor:

• Asynchronous serial - ASRL[device][::INSTR]

• GPIB - GPIB[device]::primary address[::secondary address][::INSTR]

• VXI - VXI[device]::VXI logical address[::INSTR]

where device is device number, in some interfaces there are addresses,
and last part specifies VISA session type (INSTR or Event).

In case of serial communication first, serial interface has to be con-
figured. There are specific parameters like serial transmission speed
(baud rate), format of data frame like bit stop number, how many data
bits, parity bit. Everything must match on both side of transmission
channel.

Ethernet communication

Very useful technique is socket communication. It can be used not
only to control equipment over network, but also to communicate with
server or client program on the same machine (as Inter Process Com-
munication). For that in LabVIEW there are separate functions located
in Data Communication → Protocols. Here we have separate TCP and
UDP folders and also ready functions for e-mail sending SMTP Email
as well as Hypertext Pages download HTTP Client and File Transfer
Protocol FTP.

Nowadays there is a very popular library which helps proper devel-
opment of networked software. It is called ZeroMQ https://zeromq.

org - Zero Message Queue. The main goal is to create not prone to
errors network communication with already predefined templates for
network protocols. There is plenty of different scenarios for client/server,
publisher/subscriber e.t.c. This library is completely Open Source -
LGPL licensed. It can be installed using VI Package Manager. A wide
range of possibilities and ease of use predestine the use of this library
for cooperation with other software or external devices that are able to
communicate according to these protocols. This means mostly System
on Chip devices, which operates on GNU/Linux system like Rasp-
berry PI, Beaglebone, FPGA devices with hard CPU cores like Xilinx
Zynq, e.t.c.

If we develop some devices for Internet of Things, it is worth to
consider the MQTT library, which allows LabVIEW application to con-
nect to Message broker like Eclipse Mosquitto https://mosquitto.org.

https://zeromq.org
https://zeromq.org
https://mosquitto.org

122 labview and open source solutions

Such library was prepared by daq.io https://www.daq.io. Source for li-
brary is available in GitHub https://github.com/DAQIO/LVMQTT. This
is a way to use cloud based data storage for e.g. data acquired from
sensors, which can be spread all over the world.

https://www.daq.io
https://github.com/DAQIO/LVMQTT

Open source platforms

Arduino boards

Arduino is an open-source electronic platform, which heart is an 8-bit
microcontroller Atmel AVR. This platform was created as a simple and
inexpensive tool for prototyping for students without the electronic
and programming background. By its simplicity, it gained supporters
around the world, especially in so-called makers. Due to the growing
demand Arduino began to develop by adding new versions of boards
dedicated to various purposes, e.g. Internet of Things (IoT), medi-
cal measurements, construction of 3D printers or embedded systems.
The list of Arduino board versions is long but the most common used
boards are shown in figure 113.

The Arduino UNO was the first USB Arduino board. It is a ref-
erence model for Arduino platform. The heart of this board is the
ATmega328P microcontroller. The Arduino UNO is equipped with 14

digital input/output pins and 6 analog inputs. The 6 of 14 digital pins
also can be used as PWM outputs (Source: arduino.cc).

The Arduino Leonardo board is dedicated to projects, when USB
communication is needed. Especially, this board can be connected to
a computer as a mouse or keyboard. The heart of Arduino Leonardo
is the ATmega32u4 microcontroller and it is equipped with 20 digital
input/output pins, in which 7 of them can be used as PWM outputs,
and 12 analog inputs (Source: arduino.cc).

The Arduino Mega 2560 is based on the ATmega 2560 microcon-
troller and it was designed for more complex projects especially for
the 3D printers and robotics projects. This board is equipped with 54

inputs/outputs, in which 15 of them can work as PWM outputs, and
there are 16 analog inputs.

The Arduino LilyPad is special version dedicated to wearables projects,
based on the ATmega328 microcontroller with 9 digital inputs/outputs
and 4 analog inputs. This board can be attached to the textile by spe-
cial conductive thread. The Arduino LilyPad can be washed by hand
with a mild detergent after removing the batteries and other power
supplies. Then the board should be dried according to the description

arduino.cc
arduino.cc

124 labview and open source solutions

of this board (Source: arduino.cc). The disadvantage of the Arduino
LilyPad is lack of stabilized power supply, which the user have to de-
liver.

Figure 113: The most popular Arduino
Boards: Uno, Leonardo, Mega 2560,
LilyPad and Nano. Source: arduino.cc

The Arduino Nano is the smallest board with dimensions: 18 x 45

mm. The heart of this board is the ATmega328 and it is equipped
with 22 digital inputs/outputs, in which 6 of them can be used as
PWM outputs, and there are 8 analog inputs. The size of the board is
compatible with breadboards.

arduino.cc
arduino.cc

open source platforms 125

The building of the Arduino UNO board is shown in figure 114 and
the Arduino Mega 2560 in figure 115.

Figure 114: The Arduino
UNO pinout. Source https:

//www.theengineeringprojects.com
The main programming software dedicated to the Arduino Board is

the Arduino integrated development environment (Arduino IDE). The
Arduino IDE supports the C++ language but the code must be writ-
ten according to a specific scheme. Additionally, the Arduino boards
can be programmed using block-based programming languages as
Snap4Arduino (dedicated for child) or graphical programming lan-
guages as LabVIEW (LIFA and LINX libraries).

https://www.theengineeringprojects.com
https://www.theengineeringprojects.com

126 labview and open source solutions

Figure 115: The Arduino
Mega 2560 pinout. Source
https://www.pinterest.com/

https://www.pinterest.com/

open source platforms 127

Arduino IDE

The Arduino integrated development environment (Arduino IDE) is
dedicated software for Arduino boards, which can be download from
page https://www.arduino.cc. The Arduino IDE window is shown
in figure 116. After running the software, open the Tools section and
choose board and port from the list.

Figure 116: The Arduino IDE window,
where 1 - button to verify the code, 2

- button to upload the code to Arduino
board and 3 - button to open the Serial
Monitor.

All the programs always consist of two basic functions:

• setup - run only ones at the beginning of the program.

• loop - run constantly. All instructions put here will be repeated
many times.

Users can extend programs with own functions but these two are
mandatory.

https://www.arduino.cc

128 labview and open source solutions

The Arduino IDE allows to run examples, which are helpful to un-
derstand how the libraries work. Such example can be opened after
clicking on File→Examples and then the user will see the list of libraries
and examples for them.

Arduino Libraries

Standard library in Arduino IDE consists functions to deal with digi-
tal and analog pins and to generate Pulse Width Modulation (PWM)
signals. In figure 117 there is a connection scheme of setup consisting
of LED diode connected to pin #8 and button connected to pin #7. A
capacitor is connected to button to compensate for the effect of contact
jitter.

Figure 117: Scheme of setup for example
in figure 118.

In figure 118 there is a program, that should lighten up LED diode
in the moment of button press. The program begins from creation two
integer variables named LED and BUTTON, which stores the pin num-
bers. Next in function setup, a pinMode(pin number, OUTPUT/INPUT)
function is called, which sets up the pin for input or output. From
button, a value is read, so the pin mode is set as input. While pin
connected to LED diode will send HIGH Boolean value (LED on) or
LOW (LED off), so the pin mode is set as output.

Next in function loop a value is read from button thanks to digital-
Read(pin number) function. If read value is HIGH (button is pressed),
then a HIGH signal is sent to LED diode with help of digitalWrite(pin

open source platforms 129

Figure 118: Program which turns LED
on when button is pressed, prepared in
Arduino IDE environment.

130 labview and open source solutions

number, HIGH/LOW) function. Otherwise on this pin a LOW signal is
sent. At the end, small delay (10 ms) is added with help of delay(time
in ms) function.

Digital pins marked as PWM (Pulse Width Modulation) give possi-
bility of digital signal generation with different filling. Function to
generate PWM signal is analogWrite(pin number, filling). Wherein
filling accepts value from [0;255] range. Value 255 means that PWM
signal has 100% filling. From scheme ?? a button was removed.

Figure 119: Program which changes fill-
ing of PWM signal connected to LED
diode in Arduino IDE.

open source platforms 131

Next a program presented in figure 119 was written, which grad-
ually changes PWM filling from 0 to 255 on pin connected to LED
diode. After reaching maximum filling, program gradually decreases
filling from 255 to 0. Human eye is not capable to distinguishing LOW
and HIGH states if they are changing fast enough, so when filling is
increasing it seems that LED diode is shining stronger, and when fill-
ing is decreasing, it seems that LED diode is shining less. In reality
we don’t regulate light intensity, but we change the time of HIGH state
- so the time, when LED shines. Program starts by creating integer
variable, which stores LED pin number. Next in function setup, a pin-
Mode function is called, which sets #8 pin as output. In loop function, a
for loop is created, where i variable changes by 1 in the range [0;255].
Value of i variable is passed as filling to analogWrite function. In this
manner PWM signal is generated, which increases by 1 every 10 ms
until 255 value is reached. Next for loop is decreasing i value by 1 in
every iteration until zero value is reached.

The last signal type, which can be read by Arduino board is analog
signal. To demonstrate reading analog value, a system was assembled,
presented in figure 120.

In figure 121 there is a program, which reads analog signal (voltage
value) provided by LM35 temperature sensor. On the basis of voltage
read, a temperature in Celsius centigrade is calculated. Value of tem-
perature in Celsius centigrade is passed to serial port monitor. On the
beginning, a variable is created, which stores analog port number used
for LM35. Next in setup function, serial port is initialized with help of
Serial(baud rate) function. In loop function analog value is read with
help of analogRead(pin number) function. analogRead function returns
value from range [0;1023] (as the AD converter in microcontroller on
Arduino board has 10-bit resolution) and maximal voltage on stan-
dard Arduino setup is 5 V. The value 1023 means the 5 V. So to get the
value of voltage we need to multiply the read value by 5 and divide
by 1023. 1 Voltage calculation is performed in line 13 of source code. 1 correctly we should divide by 1024 -

this is stated in reference manual for
AVR microcontrollers. Value 1023 is re-
ferred to Vref - 1 LSB, not the Vref

Next obtained voltage value is multiplied by 100 (according to LM35

manual) to get the temperature value. Temperature value is displayed
in serial monitor with use of Serial.println(value) function. Results are
presented in figure 122. To see temperature changes it is convenient
to use serial plotter instead serial monitor. Such results are visible in
figure 123.

Arduino IDE is the most popular environment to program Arduino
boards. Many examples and libraries ready for multiple sensors can be
found in Internet. Convenient website for library searching is https:

//www.arduinolibraries.info. To demonstrate how to use ready li-
brary, an ultrasonic range sensor was connected to Arduino board ac-
cording to figure 124.

https://www.arduinolibraries.info
https://www.arduinolibraries.info

132 labview and open source solutions

Figure 120: A scheme for setup for ex-
ample in figure 121.

open source platforms 133

Figure 121: Program, that reads tem-
perature from LM35 sensor, prepared in
Arudino IDE.

134 labview and open source solutions

Figure 122: Result of program from fig-
ure 121 in serial monitor.

open source platforms 135

Figure 123: Result of program from fig-
ure 121 in serial plotter.

136 labview and open source solutions

Figure 124: Scheme of setup to example
in figure 126.

From https://www.arduinolibraries.info/libraries/hcsr04-ultrasonic-sensor

website a library for ultrasonic range sensor support was downloaded
and unpacked in folder Arduino/libraries. Next Arduino IDE environ-
ment was restarted. After choosing File→Examples one could find
ready examples which is shown in figure 125. From the list a HCSR04.ino
was chosen. Next pin numbers for “trigger” and “echo” in hc object
were updated, and example was programmed (in figure 126).

Results from running HCSR04.ino example are presented in figure
127. As it is clearly seen, using external libraries is easy. One needs to
find a library first, than upload it to Arduino/libraries and then check if
example code works.

Besides https://www.arduinolibraries.info website, many exam-
ple libraries can be found on https://github.com. For example let
us use KA-Nucleo-Weather shield (presented in figure 147), which
contains a LPS331 sensor. Library for pressure sensor is available on
GitHub: https://github.com/pololu/lps331-arduino). After down-
loading library, it should be unpacked to Arduino/libraries directory.
Then SerialMetric.ino example was run, which is shown in figure 128.

Results from SerialMetric.ino example are shown in figure 129. In
Arduino IDE there are plenty of possibilities to quickly and easily
program readout from sensors. Thanks to a wide range of libraries,
available on-line, there is no need to write low-level code.

https://www.arduinolibraries.info/libraries/hcsr04-ultrasonic-sensor
https://www.arduinolibraries.info
https://github.com
https://github.com/pololu/lps331-arduino

open source platforms 137

Figure 125: Available examples in in-
stalled library for ultrasonic range sen-
sor support.

138 labview and open source solutions

Figure 126: Example program that reads
distance from ultrasonic range sensor.

open source platforms 139

Figure 127: Results of program from fig-
ure 126 running presented in serial plot-
ter.

140 labview and open source solutions

Figure 128: Example program, that reads
pressure and temperature from LPS331

sensor.

open source platforms 141

Figure 129: Results from program run,
which is presented in figure 128, ob-
served in serial monitor

142 labview and open source solutions

Raspberry PI

Raspberry PI platform is an example of successful introduction of Sys-
tem on Chip (SoC) board to community. Raspberry PI was founded
in the UK. Its goal was Single Board Computer (SBC) for children
and youth as an aid in learning programming and computer sys-
tems. Initially this system was prepared as Python Interpreter (PI)
- which remains as part of the name. Python is a textual programming
language, normally used as an interpreted language, easy to teach,
with simple and clear syntax. Raspberry PI foundation main page is
https://www.raspberrypi.org/. A great “MagPI” magazine was cre-
ated next to Raspberry PI. Each issue is available online free on the site
https://magpi.raspberrypi.org.

In the year 2019, the newest version is Raspberry PI 4, which comes
with 3 different sizes of Random Access Memory (RAM): 1 GiB, 2 GiB
and 4 GiB, 1.5 GHz, 64bit ARM processor, 2 USB3.0 ports and 2 USB2.0
ports, 2 HDMI outputs to connect 2 monitors. This model is presented
in figure 130.

The first Raspberry PI model was introduced in 2012, and it is
named Raspberry PI B.

Figure 130: Raspberry Pi 4 Model
B from the side. Michael Henzler /
Wikimedia Commons / CC BY-SA 4.0
(https://creativecommons.org/licenses/by-
sa/4.0)

GPIO Header
SoC means, that most components of computer system are inte-

grated in the single chip. In the case of Raspberry PI, SoC chips
are manufactured by Broadcom. In Raspberry PI B, presented in fig-
ure 131, Broadcom BCM2835 was used, which is characterized by the
ARMv6Z 32-bit instruction set. This was mainly the reason for derived
operating system: Raspbian (to make the best use of this ARM archi-
tecture). The common graphics processing unit (GPU) is VideoCore IV

https://www.raspberrypi.org/
https://magpi.raspberrypi.org

open source platforms 143

Description Pin no. Pin no. Description
VDD_3v3 1 2 VDD_5v
I2C1_SDA 3 4 VDD_5v
I2C1_SCL 5 6 DGND
DIO_7 7 8 UART0_TX
DGND 9 10 UART0_RX
DIO_11 11 12 DIO_12

DIO_13 13 14 DGND
DIO_15 15 16 DIO_16

VDD_3v3 17 18 DIO_18

SPI0_MOSI 19 20 DGND
SPI0_MISO 21 22 DIO_22

SPI0_CLK 23 24 RESERVED_SPI0_CS0

DGND 25 26 RESERVED_SPI0_CS1

RESERVED_I2C0_SDA 27 28 RESERVED_I2C0_SCL
DIO_29 29 30 DGND
DIO_31 31 32 DIO_32

DIO_33 33 34 DGND
DIO_35 35 36 DIO_36

DIO_37 37 38 DIO_38

DGND 39 40 DIO_40

Table 7: GPIO header for Raspberry PI
starting from 1B+/A+ is 40 pin. Rasp-
berry PI A/B had only 26 pin connector.

at 400 MHz and for Raspberry PI 4B it is VideoCore VI at 500 MHz.
The family of Raspberry PI boards is an inexpensive solution for use

in many projects, where more computing power is needed in contrast
to Arduino boards. Because on SBC computers, operating systems are
used, this allows new possibilities, like use of many computer lan-
guages, like Python, JavaScript, etc. In these boards, we have net-
work Ethernet interface, which allows to prepare applications for In-
ternet of Things (IoT). We can easily configure web servers, file servers,
databases and experiment with many network remote control proto-
cols and different client/server solutions. However beware in some
versions of boards, there are no network capabilities, instead they of-
fer low energy consumption. On top of that we can run Docker, for
easy deployment and maintenance of complex services. Normally on
Raspberry PI SBCs system is started from micro SD card (Raspberry
PI model B used standard size SD card). New models starting from
Raspberry PI 3 can boot also from other storage devices, like pen-
drives, hard disks or solid state disks (no need for SD cards).

In this book, an example using Raspberry PI 2B is presented, be-
cause already prepared solution for interfacing with National Instru-
ments LabVIEW exists already. This board is presented in figure 132.

The use of SBCs has many advantages, but it is not always the best
solution. There are also disadvantages, like power consumption is

144 labview and open source solutions

Figure 131: Raspberry PI B,
Simon Waldherr / Wikime-
dia Commons / CC BY-SA 4.0
(https://creativecommons.org/licenses/by-
sa/4.0)

open source platforms 145

Figure 132: Raspberry Pi 2B, Evan Amos
/ Wikimedia Commons / Public Do-
mainclearly higher, then data corruption and system corruption may occur

- sometimes user intervention is needed. SD cards may wear out if
used improperly, etc.

It is important to choose the right tools for the specific problem.
Excessive system complications are not recommended, and in many
cases can be harmful for reliability.

GNU/Linux operating system

The core system used on this SBC is Raspbian (https://www.raspbian.
org/). This is a GNU/Linux distribution, based on Debian GNU/Linux,
but specially prepared form ARM processors used on Raspberry PI.
Nowadays many different operating system can be used on Raspberry
PI platform both GNU/Linux distributions (Raspbian, Ubuntu, Fe-
dora, etc.) and others like RISC OS, Windows IoT Core, RaspBSD,
etc. However Raspbian is very well suited for this hardware and it is
well-known around the world. Components of GNU/Linux systems
like Rasbian are licensed with open source licenses.

Usage of GNU/Linux system is quite easy. However it is recom-
mended for users to get to know the Command Line Interface (CLI),
as it allows to operate and configure many tools. The most popular
shell is Bourne Again Shell (Bash). You can find many tutorials online,
and also there is a freely available book from Raspberry foundation:

https://www.raspbian.org/
https://www.raspbian.org/

146 labview and open source solutions

https://magpi.raspberrypi.org/books/essentials-bash-vol1.
There are also many other books concerning usage of Raspberry PI.

Free books are available on https://magpi.raspberrypi.org/books.
There are many possibilities to interface LabVIEW with Raspberry

PI. A server responding to commands and sending data can be used
as an example. In LabVIEW there are network communication blocks
for tcp and udp sockets. If Ethernet is not possible, then serial port
can be used. In this book a ready solution with LINX library will be
shown.

Raspberry PI SBCs have general purposes input / output (GPIO)
exposed on GPIO pin connector. This can be used with many projects
to control many sensors and actuators. First Raspberry PI has 26-
pin connector, but starting from Raspberry PI 1B+ 40-pin connector is
used. To prepare connections with external devices, a pin-out is used,
which is presented in table 7.

https://magpi.raspberrypi.org/books/essentials-bash-vol1
https://magpi.raspberrypi.org/books

LabVIEW Packages

Software distribution in form of packages proved very well on open
source systems like GNU/Linux systems. This convenient method has
gained recognition, and was adopted in LabVIEW also. Package man-
ager can list available packages, show description of these packages
and can help in choosing the right package for specific LabVIEW ver-
sion.

LabVIEW Package Manager

A very useful software which is used to distribute libraries in Lab-
VIEW is LabVIEW Package Manager (VIPM). This piece of software al-
lows to search and install selected library for chosen LabVIEW version.
After installation of such library, functions are automatically added to
functions palette of chosen LabVIEW version (useful if different ver-
sions of LabVIEW coexist on your PC). The big advantage of VIPM is
cooperation with most popular operating systems like Windows, Mac
or Linux. Example usage of VIPM for LIFA library installation is pre-
sented in figure 133.

LabVIEW Interface for Arduino (LIFA)

Arduino board can be programmed from LabVIEW level with use of
libraries like: LabVIEW Interface for Arduino (LIFA) or Digilent LINX.
First of them was prepared by National Instruments in 2009 year. To
use LIFA library, one needs to:

1. Install NI VISA (http://www.ni.com/visa).

2. Install LabVIEW Package Manager (VIPM).

3. Run VIPM, find LIFA library (presented in 133) and install this li-
brary.

4. Install Arduino IDE environment (freely available from https://

www.arduino.cc).

http://www.ni.com/visa
https://www.arduino.cc
https://www.arduino.cc

148 labview and open source solutions

5. Upload LIFA_Base.ino - dedicated sketch to Arduino board using
Arduino IDE environment. This sketch is available in: /LabVIEW
year/vi.lib/LabVIEW Interface for Arduino/Firmware/LIFA_Base.

Figure 133: LIFA library installation.

After a sketch was uploaded to Arduino, it is time to start LabVIEW.
Functions from LIFA library are now be available in Functions palette,
in fold named Arduino which is shown in figure 134.

LIFA Library usage

Every program using LIFA library, starts with Init function, that allows
to initialize connection with Arduino board. On the input of the func-
tion, one need to provide serial port name, to which Arduino board is
connected. The easiest way is to view the port name when sketch is
being uploaded in Arduino IDE. Moreover Arduino board type must
be provided. Supported types are: Uno, Duemilanove w/ATmega 328, or
Mega 2560. recommended baudrate is 9600. With higher speeds, some
communication problems with Arduino may occur.

labview packages 149

Figure 134: Fold Arduino in Functions
palette.

150 labview and open source solutions

Functions allowing analog pin, digital pin, PWM operations are
placed in Functions palette→ Arduino→ Low level fold. In figure 136 a
program is presented, whose task is turning LED on and off. Scheme
of hardware setup is presented in figure 135.

Figure 135: Scheme of hardware setup
for program presented in figure 136.

Program begins from initialization of connection with Arduino Mega
2560 board, which is connected to COM5 port with help of Init func-
tion, which was described above. Next I/O port selected by user is
configured as output with help of Set Digital Pin Mode function from
Low Level fold. In while loop a Digital Write Pin function is placed,
which sets the High (1) or Low (0) level on selected pin. This function
accepts numeric value on input, so conversion of logic type to numeric
value is used. Outside the while loop, a Close function was placed,
that ends communication with Arduino board on selected serial port.
In moment of pressing Turn on/off button, a LED diode connected to
Arduino board lights up. After pressing the button again, LED diode
turns off.

labview packages 151

Figure 136: Program that turns LED on
and off, created with help of LIFA li-
brary.

Example described above was modified by connecting PIR motion
sensor to pin #6 (presented in figure 137). When PIR sensor detects
movements, the LED diode lights up. Therefore pin #6 should be con-
figured as input. We will read its state: 0 (no movement) or 1 (move-
ment detected). Modified example is presented inf figure ??. Another
basic function is used here: Digital Read Pin, which returns read value
from selected pin. As you can see reading and writing digital values to
selected pins come to two activities: pin mode configuration (as input
or output) and reading or writing values to/from the pin.

Arduino board allows also reading analog values from pins marked
with “A” letter. In figure 140 an example program is presented, in
which analog value is read from LM35 sensor. When read tempera-
ture is greater than 30

oc, the RGB (red-green-blue) LED diode glows
red, otherwise LED diode glows green. Scheme of hardware setup is
presented in figure 139. Program starts with connection to the Arduino
board initialization with help of Init function. Next connection of RGB
LED should be configured with help of RGB LED Configure function.
This function returns pin numbers in the form of 1D array. In while
loop analog value from temperature sensor is read using Analog Read
Pin function. According to the LM35 datasheet, read voltage value
should be multiplied by 100 to get the temperature value in Celsius
centigrade. Calculated temperature is compared with value of 30, and
if it is higher, then Select function returns red colour code. Otherwise
Select function returns green color code. Output from Select function
is connected to RGB LED Write function, which sets selected color on
RGB LED connected to Arduino board. At the end, Close function is
called, which ends communication with Arduino board. Summariz-
ing, reading analog values comes down to using the Analog Read Pin
function.

Many times it is convenient to show measured values on display,

152 labview and open source solutions

Figure 137: Scheme of hardware setup
for program presented in figure 138.

labview packages 153

Figure 138: Program that lighten up LED
diode after movement is detected by PIR
motion sensor. Program is prepared
with use of LIFA library.

154 labview and open source solutions

Figure 139: Scheme of hardware setup
for program presented in figure 140.

labview packages 155

Figure 140: Program that measures tem-
perature from LM35 sensor and changes
RGB LED color accordingly.

156 labview and open source solutions

e.g. LCD display. In figure 142 a modified example (from 140) is
presented. A LCD display is added, which shows temperature value.
Scheme of hardware setup is presented in figure 141.

At the beginning, a LCD Configure 4-bit function is used, where on
input a cluster containing pin numbers connected to LCD display is
passed. Next display size is configured with help of LCD Set Size func-
tion. In this case LCD with 16 columns and 2 rows is used. After
reading temperature value from sensor, LCD cursor is set to the initial
position. For this purpose a LCD Set Cursor Position function is used
with input values of zero column and zero row. Temperature value is
displayed on LCD display with help of LCD Print function, which ac-
cepts a string value on input. More useful functions for LCD operation
can be found in Functions palette→ Arduino→ Sensors→ LCD.

In example presented in figure 140, RGB LED usage was programmed
with help of RGB LED dedicated functions. In figure 143 an example is
presented, in which you can change the input of individual RGB colors
to synthesize any color on RGB LED with use of low-level functions.
First, three pins are configured as PWM outputs with help of PWM
Configure Port function. Whereas in while loop, individual colors are
set up on RGB LED diode with help of PWM Write Port function. After
starting the program, on RGB LED a violet color is visible. Functions
used in this example, operate three pins at once. To configure and
change duty cycle of signal on single pin, one need to use PWM Write
Pin function.

The LIFA library contains also functions to operate actuators like
servos or DC motors. In figure 145 an example program is presented,
which controls the servo. To do this, first a Set Number of Servos func-
tion is used, which accepts number of servos connected to Arduino
board on its input. Next Configure Servo function is used, which ac-
cepts pin number on its input. In while loop a Servo Write Angle func-
tion is used, which sets selected angle in servo. All functions to operate
servos are located in Functions palette → Arduino → Sensors → Servo.
Scheme of hardware setup is presented in figure 144.

Examples presented above, demonstrate reading/writing data to
digital pins, PWM signal generation, reading analog values and op-
eration with basic electronics elements. More available functions from
LIFA library for dealing with sensors are presented in figure 146.

LIFA controlled Arduino project

In the chapter above, it was shown hot to deal with simple sensors and
actuators. In this chapter, a example project is presented, in which Ar-
duino shield is used. This is KA-Nucleo-Weather shield (presented in
figure 147). The shield consists of STLM75 temperature sensor, LPS331

labview packages 157

Figure 141: Scheme of hardware setup
for program presented in figure 142.

158 labview and open source solutions

Figure 142: Program that measures tem-
perature with use of LM35 sensor and
displays temperature value on LCD dis-
play.

labview packages 159

Figure 143: Program, that allows to dy-
namically change RGB LED color.

160 labview and open source solutions

Figure 144: Scheme of hardware setup
for program presented in figure 145.

pressure sensor, HTS221 humidity sensor and TSL25721 light intensity
sensor.

A weather station reading temperature, pressure and humidity will
be built as a project. All these sensors are connected through I2C bus.
In the project a design pattern called state machine is used, which
block diagram is presented in figure 148.

First state is configuration of Arduino board connection with Lab-
VIEW and set up of communication with pressure sensor located in
shield. It is presented in figure 149. For that a Init function is used,
which initializes connection with Arduino Mega 2560 board. Next I2C
Init function is called, which initializes I2C bus. Pressure sensor has
address of 93. According to sensor datasheet, communication with
sensor can be checked by reading one byte from its register from ad-
dress 15. For this purpose a I2C Write function is used, which accepts
on its input, an address of sensor (numerical value) and values, which
should be sent to I2C bus in form of 1D array of numerical values. In
this case register address is sent (15), from which a value will be read.
To read data from I2C bus a I2C read function is used, which returns
read values in the form of 1D array of numerical values. Read value
is extracted from array with use of Index Array function and then it
is compared with 187. According to sensor datasheet, if read value
from register of address 15 is equal to 187, then communication with

labview packages 161

Figure 145: Program that sets selected
angle on servo.

162 labview and open source solutions

Figure 146: Available functions in Sen-
sors fold of LIFA library.

labview packages 163

Figure 147: KA-Nucleo-Weather shield.
Source: https://kamami.pl.

Configure Read Pressure Read Temperature Read Humidity

Figure 148: Block diagram of weather
station project.

pressure sensor was successful.
In next step, pressure value is read from sensor. This is presented

in figure 150. The value is stored as 3 bytes in 3 registers of addresses
168-170. At the beginning, address of first register is send - this is
168, with help of I2C Write function. Next 3 bytes are read with I2C
Read function. The read data bytes must be stuck together according
to figure 151.

Conversion of read 24-bit raw value to pressure value is done as
follows:

p =
praw

4096
+ 260 (1)

In figure 152 a 3 bytes conversion to 24-bit value is presented, which
is used to obtain pressure value. At the beginning byte values are ex-
tracted from 1D array with help of Index Array function. Next numer-
ical values are converted to array with individual bits using Number
to Boolean Array function. The resulting arrays are combined in one
with help of Insert into Array function. Ready array is converted to nu-
merical value with use of Boolean Array to Number function. Following
steps in subVI are calculation of pressure with help of equation 1.

Next state is temperature measurement. It is presented in figure 153.
To read temperature value from sensor a an appropriate register ad-
dress is sent, which is 0 in this case. For this a I2C Write function is

https://kamami.pl

164 labview and open source solutions

Figure 149: Program, that reads values
of temperature, pressure and humidity.
A Configure state of state-machine is pre-
sented here.

labview packages 165

Figure 150: Program, that reads values
of temperature, pressure and humidity.
A Read pressure state of state-machine is
presented here.

P0P1P2

7 6 5 4 3 2 1 07 6 5 4 3 2 1 07 6 5 4 3 2 1 0
23 15 7 0816

Figure 151: 24-bit value praw consists of
P1, P2, P3 read bytes.

166 labview and open source solutions

Figure 152: SubVI, that converts 3 bytes
to 24-bit value and calculate pressure
value.

labview packages 167

used, where sensor address is 72 and, and data value to sent is 0. Next
temperature is read as 2 bytes (T1, T2) using I2C Read function. Tem-
perature is determined according to equation 2, wherein the second
byte is shifted by 7 bits to the right, as it only has single bit (most
significant bit) for 0.5 temperature value.

T = T1 + 0.5 · T2 (2)

In figure 154 a subVI is presented, that from two read bytes cal-
culates temperature. At the beginning byte values are extracted from
1D array using Index Array function. Next T2 byte is converted to bits
array using Number to Boolean Array function. Operation of desired
shifting by 7 bits right is analogous to rotation of of an array left by
1bit , because other bit values are 0, so Rotate 1D Array function is
used with value 1 passed on input. The resulting array is converted to
number using Boolean Array to Number function. Such prepared values
are then passed to equation 2.

Figure 153: Program, that reads values
of temperature pressure and humidity.
A Read temperature state of state-machine
is presented here.

The last state is reading humidity from sensor. This is presented in
figure 155. At the beginning, a communication with sensor is estab-
lished, by sending register address of 15 to device with address of 95

using I2C Write function. If value returned from I2C Read function is
equal to 188, then according to sensor datasheet, communication from
sensor was successful. Next a subVI is called, which block diagram
is presented in figure 156. For configuration, first register address is
sent, then values with help of I2C Write function, e.g. to power up

168 labview and open source solutions

Figure 154: SubVI, that calculates tem-
perature value taking two bytes on in-
put.

labview packages 169

sensor, a value 129 should be sent to register at address 32. Humidity
sensor may return single value (one-shot) or can make measurements
in selected frequency. In this project single shot value was chosen,
so according to datasheet, a value of 96 should be sent to register at
address 16.

Figure 155: Program, that reads values
of temperature, pressure and humidity.
A Read humidity state of state-machine is
presented here.

In datasheet for humidity sensor, there is a plot, presented in figure
157 showing how to obtain humidity from values obtained from reg-
isters and calibration registers. This is a linear calibration plot. On the
basis of designations from plot, an equation for relative humidity (rH)
can be written as equation:

rH = H0_RH+
[H_(T)_OUT − H0_(T0)_OUT] ∗ [H1_RH − H0_RH]

H1_(T0)_OUT − H0_(T0)_OUT
(3)

Therefore to calculate relative humidity, one need to read following
values from registers: H0_RH, H1_RH, H1_(T0)_OUT, H0_(T0)_OUT
and H_(T)_OUT. Register map from sensor datasheet is presented in
figure 158.

In figure 159 there is a subVI, which purpose is to read neces-
sary values from registers. At the beginning, a H0_RH value is read.
According to register map, H0_RH multiplied by 2 ((H0_RH_x2) is
stored in register at address 0x30. Converting hexadecimal value 0x30

to decimal, we have 48. A I2C Write function is called, where on its in-
put a value of 48 is connected. Address of humidity sensor is 95. Value
from register is read by I2C Read function in form of array. To extract

170 labview and open source solutions

Figure 156: SubVI, that configures hu-
midity sensor.

Figure 157: Idea how to obtain relative
humidity value, using calibration points.
Source: https://download.kamami.pl/

p558410-hts221tr.pdf.

https://download.kamami.pl/p558410-hts221tr.pdf
https://download.kamami.pl/p558410-hts221tr.pdf

labview packages 171

Figure 158: Register map of humid-
ity sensor. Source: https://download.

kamami.pl/p558410-hts221tr.pdf.

https://download.kamami.pl/p558410-hts221tr.pdf
https://download.kamami.pl/p558410-hts221tr.pdf

172 labview and open source solutions

value from array Index Array function is used. In this way H0_RH_x2
value is read. To convert it to H0_RH value, one need to just divide
by 2. In similar way H1_RH value is read. H1_(T0)_OUT value is
stored in two registers at address 0x3A and 0x3B (in decimal that is 58

and 59). Therefore two values need to be read, and next they should
be combined into 16-bit value in similar way as P1, P2 and P3 to Praw

when pressure was read. For this purpose a subVI is created, that
converts 2 bytes to 16-bit value, which is presented in figure 160.

After reading necessary calibration data, the last subVI is called,
which is presented in figure 161. Measured humidity value is placed
in registers at addresses 0x28 and 0x29 (40 and 41 in decimal). Thus
similar as in H1_(T0)_OUT case, one need to convert two bytes read to
16-bit value. Following part of subVI is calculation of relative humidity
from calibration curve, according to 3 equation.

After starting the program, all three values: pressure, temperature
and humidity are read. As it is visible communication with sensors
through I2C bus comes to: sending internal address of register to sen-
sor, providing its bus address with help of I2C Write function, reading
value from register with help of I2C Read function and data processing
like calibration, conversion, etc. Besides I2C bus, in LabVIEW with
LIFA library one can use also SPI BUS if SPI sensors are available.
Functions available to operate SPI interface are presented in figure 162.

Digilent LINX library

The LINX library can be used for communication with Arduino, Rasp-
berry PI, myRIO and chipKIT devices. This library is available from
LabVIEW MakerHub, an organisation supporting makers environment
with use of LabVIEW. More information can be obtained from website:
https://www.labviewmakerhub.com/. LINX library can be installed
from web page: http://sine.ni.com/nips/cds/view/p/lang/pl/nid/212478

and also using VIPM (VI Package Manager) tool.
The LINX library contains basic functions like:

• Open Serial - initial function, which start connection with device
on selected serial port.

• Close - function, which ends connection with device.

and functions grouped in folders:

• Peripherals→ Analog - supporting analog inputs.

• Peripherals→ Digital - supporting digital input/output ports.

• Peripherals→ PWM - supporting PWM signal generation.

www.labviewmakerhub.com
http://sine.ni.com/nips/cds/view/p/lang/pl/nid/212478

labview packages 173

Figure 159: SubVI, that configures hu-
midity sensor.

174 labview and open source solutions

Figure 160: SubVI, that converts 2 bytes
into 16-bit value.

Figure 161: SubVI, that reads humidity
values and calculates relative humidity
using equation 3.

labview packages 175

Figure 162: Functions for communica-
tion with devices over SPI bus from LIFA
library.

• Peripherals→ I2C - supporting I2C bus operation.

• Peripherals→ SPI - supporting SPI bus operation.

To upload firmware for Arduino, after starting LabVIEW, one need
to select: Tools → MakerHub → LINX → LINX firmware Wizard...
and next choose proper type of Arduino board and choose serial port.
This is shown in figure 163.

LINX Library usage

The LINX library allows for reading and writing digital signals. First
example program will turn on and off LED diode. Scheme of hard-
ware setup is presented in figure 135. In figure 164 a ready program
is presented, which starts with Open Serial function to begin connec-
tion with Arduino board on selected port. Next, inside while loop, a
True/False Boolean value is sent to selected pin according to state of
button. Function used to send digital data is Digital Write. Program
ends with calling Close function, which stops connection with the Ar-
duino board.

Previous example was modified adding PIR motion sensor, accord-
ing to scheme presented in figure 137. In figure 165 there is a program,
which turns LED diode on, when motion is detected by PIR sensor.
This time on input of Digital Write function, value read from pin #6 is
passed. Reading value from digital pin is realized by calling Digital
Read function.

Above two examples used reading/writing digital signals. In fig-

176 labview and open source solutions

Figure 163: Configuration of Arduino
board type.

labview packages 177

Figure 164: Program which turns on and
off LED diode with help of LINX library.

Figure 165: Program that turns LED
diode on when motion is detected with
help of LINX library.

178 labview and open source solutions

ure 166, however there is a program, that reads voltage from LM35

temperature sensor. This read voltage is proportional to actual tem-
perature of the sensor. Program starts with call of Open Serial function,
which initializes connection with Arduino board. Next, inside while
loop, voltage is read from pin #0 with use of Analog Read function. Ob-
tained voltage value is multiplied by 100 to get temperature in Celsius
centigrade. After while loop finish, a Close function is called, which
ends communication with Arduino board. Scheme of hardware setup
is presented in figure 167.

Figure 166: Program that reads volt-
age value from analog pin, where LM35

temperature sensor output is connected.
Program prepared with use of LINX li-
brary.

The LINX library allows for PWM signal generation with help of
PWM Set Duty Cycle function. This function accepts on its input: pin
number, which will be used for PWM signal generation and duty cycle
(filling - numerical value from 0..1 range, where 1 means 100%). In
figure 168 a program is presented, in which duty cycle can be changed
on RGB led diode colors. In loop, three functions PWM Set Duty Cycle
are placed. To inputs of these functions, user controls and pin numbers
are connected, which is presented in figure 169.

The LINX library also supports functions for controlling popular
sensors and actuators, which is presented in figure 170. One of folds is
useful for servo control. In figure 171, an example program is shown,
which can set an angle of servomotor. To do so, three functions are
used. One of them is Servo Open One Channel, which accepts pin num-
ber with connected servo. Second function is Servo Set Pulse Width One
Channel which is placed inside while loop. It accepts pulse width in µs.
Third function is Servo Close Channel. Scheme of hardware setup is pre-

labview packages 179

Figure 167: Scheme of hardware setup
for program presented in figure 166.

Figure 168: Program that allows duty cy-
cle changing of RGB diode colors with
help of LINX library.

180 labview and open source solutions

Figure 169: Scheme of hardware setup
for program presented in figure 168.

labview packages 181

sented in figure 144. After starting the program, servomotor changes
its angle according to provided duty cycle value.

Figure 170: List of available folds with
functions for sensors and actuators con-
trol in LINX library.

Using LINX library, it is easy also to control DC motor. The DC mo-
tor connection to Arduino board is presented in figure 173. Program
to control DC motor is presented in figure 172. The DC motor rotation
speed is controlled by PWM signal duty cycle with help of PWM Set
Duty Cycle function. Rotation direction is controlled by digital pin, so
we use 0 - False, and 1 - True, Boolean states.

182 labview and open source solutions

Figure 171: Program that allows servo-
motor angle changing with help of LINX
library.

Figure 172: Program that controls speed
of DC motor and controls direction of ro-
tation with use of LINX library.

labview packages 183

Figure 173: Scheme of hardware setup
for program presented in figure 172.

184 labview and open source solutions

LINX controlled Arduino project

In this chapter a project for controlling weather station is presented.
Pressure, temperature and humidity is read from sensors. with use of
LINX library. Previous attempt was prepared with use of LIFA library.
Now we will look how to use the LINX library for this. In figures
174,175,176,177 new version of project is presented with use of LINX
library. The difference between both versions of project lies initializa-
tion functions, read and write functions to I2C bus. Functions I2C Init,
I2C Write and I2C Read from LIFA library are replaced by functions
I2C Open, I2C Write and I2C Read from LINX library. Moreover three
subVIs presented in figure 177 were modified. First of them configures
humidity sensor and it is presented in figure 178. Second subVI reads
data necessary to perform interpolation of humidity results (calibrated
read) and it is presented in figure 179. The last subVI reads measured
humidity value and performs interpolation, which is presented in fig-
ure 180. Modifications of subVIs also consisted only on replacement
of functions controlling I2C bus.

labview packages 185

Figure 174: Project of weather station re-
alized with use of LINX library. Config-
ure state of state machine is presented
here.

186 labview and open source solutions

Figure 175: Project of weather station re-
alized with use of LINX library. Read
pressure state of state machine is pre-
sented here.

Figure 176: Project of weather station re-
alized with use of LINX library. Read
temperature state of state machine is pre-
sented here.

labview packages 187

Figure 177: Project of weather station re-
alized with use of LINX library. Read hu-
midity state of state machine is presented
here.

Figure 178: SubVI used to configure hu-
midity sensor with use of LINX library.

188 labview and open source solutions

Figure 179: SubVI used to read data
necessary for performing interpolation
of humidity value (calibrated read) with
use of LINX library.

labview packages 189

Figure 180: SubVI used for reading
measured value of humidity and per-
forming results interpolation (calibrated
read) with use of LINX library.LINX controlled Raspberry PI

LINX library can also be used to control Raspberry PI single board
computer. This library will work flawlessly with Raspberry PI with
National Instruments LabVIEW 2014 32-bit version. There is no offi-
cial support for later versions. However some people managed to use
also other versions, but this needs many tweaking. The same prob-
lem is for hardware part: Raspberry PI 2 is supported, but with later
Raspberry PI models there are problems. People get around this by
making modifications in library LabVIEW code, where processor type
is checked (Raspberry PI 3 and 2 have different processors). If you
think about going this way, be warned, that it is a bumpy road. Un-
fortunately, it feels that this library was only prepared for support of
commercially available sets: LabVIEW Home 2014 + Raspberry PI 2B.
This is visible on site: https://www.labviewmakerhub.com/doku.php?

id=learn:tutorials:libraries:linx:3-0. The same is for another
platform: Beagle Bone Black, which was also supported. Currently
there is probably no interest in further development of this library. It
is a pity, that this is fading out, as these libraries used interesting so-
lution. Actually, on the Raspberry PI, LabVIEW for ARM is running
and applications created in LabVIEW on PC are just deployed on this
architecture. This is in contrast to Arduino, where LabVIEW program
runs on PC platform and communicates with Arduino via USB-Serial
connection. In case of Raspberry PI, PC could be detached, and pro-
gram will still operate on Raspberry PI.

https://www.labviewmakerhub.com/doku.php?id=learn:tutorials:libraries:linx:3-0
https://www.labviewmakerhub.com/doku.php?id=learn:tutorials:libraries:linx:3-0

190 labview and open source solutions

Simple Application on Raspberry PI

To test LINX library with Raspberry PI, LabVIEW and LINX library,
we need first to make preparations. We need:

• National Instruments LabVIEW 2014

• Raspberry PI 2B

• micro SD card with installed Raspbian GNU/Linux operating sys-
tem, version: 2017-04-10-raspbian-jessie.zip Later versions were re-
ported to not cooperate.

As for Raspbian OS images, older versions can be downloaded from
site: http://downloads.raspberrypi.org/raspbian/images/. So there
is the file 2017-04-‘0-raspbian-jessie.zip available to download. This file
should be unzipped, then resulting image file should be written to SD
card using special software which writes images. Such software is
balenaEtcher https://www.balena.io/etcher/. This should work on
Linux, Mac and Windows. There are many software with such capa-
bilities. On Windows, e.g. Win32 Disk Imager can be used https://

sourceforge.net/projects/win32diskimager/files/latest/download.
On Linux, command line tool dd can also be used. However pay at-
tention to which drive you are starting to write image, as in case of
mistake you can overwrite your hard disk, which means that every-
thing on disk, the whole system will be not usable any more.

Raspberry PI 2B should be connected to the Ethernet, where PC
with LabVIEW is also connected and ssh service on Raspberry PI
should be enabled. On the beginning if you can connect Raspberry
PI to display via HDMI port and also connect USB keyboard to Rasp-
berry PI, then enabling of ssh service is possible in graphical mode by
launching Raspberry Pi Configuration from the Preferences menu, or by
using command line (terminal) application: raspi-config. If you have
no display available - working in “headless mode”, then first read the
SD card boot partition on PC computer. This small partition intended
for system startup has FAT32 file system, so it is visible either on Win-
dows or Linux systems. To enable ssh just create empty file named
“ssh”. Unmount SD card from PC and put it into Raspberry PI, SD
card slot. When Raspberry PI starts, it looks for “ssh” file and if it
founds it, the file is deleted and ssh is enabled. For more details how
to enable ssh, look at https://www.raspberrypi.org/documentation/
remote-access/ssh/. Next we should know the IP address of Rasp-
berry PI. This could be found on your router, if DHCP service gave the
address to Raspberry PI. If you don’t have DHCP service, you should
manually set IP address on Raspberry PI. This can be done via editing
/etc/dhcpd.conf file on root partition of Raspberry PI. If you cannot

http://downloads.raspberrypi.org/raspbian/images/
https://www.balena.io/etcher/
https://sourceforge.net/projects/win32diskimager/files/latest/download
https://sourceforge.net/projects/win32diskimager/files/latest/download
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.raspberrypi.org/documentation/remote-access/ssh/

labview packages 191

use display and keyboard with Raspberry PI, then you rather need
Linux system on PC, because this partition file system is EXT4 - typical
file system for GNU/LINUX systems. See https://learn.sparkfun.

com/tutorials/headless-raspberry-pi-setup/ethernet-with-static-ip-address.
If Raspberry PI was configured as described above, we need to per-

form some steps from LabVIEW side on the PC. First we need to install
LINX library. This can be done via VIPM. Then we can start LabVIEW
2014 and then open the Target Configuration Wizard, going through
menu: Tools→MakerHub→ LINX→ Target Configuration. Then we
should provide IP address of Raspberry PI, username and password
and finally click “connect”. If nothing was changed, then default user-
name in Raspberry PI is: pi. Default password is: raspberry. This is
visible in figure 181.

Figure 181: Making a connection to tar-
get device inside LINX Target Configu-
ration.

If connection was established, then we need to select Install software
tab and click Install button. If software was installed already, the but-
ton will change name to Re-Install. This is presented in figure 182.

If everything finished without errors we are ready to prepare test
application. First it will be simple blinking led “hello world” applica-
tion, then we will improve it for some control from LabVIEW panel.
Finally this could be a basic stroboscope control application.

In figure 183 a ready “hello world” application, which just blink led
is presented. Here are three important parts: on the left - a project
window, on top right - the front panel, on bottom right, the block

https://learn.sparkfun.com/tutorials/headless-raspberry-pi-setup/ethernet-with-static-ip-address
https://learn.sparkfun.com/tutorials/headless-raspberry-pi-setup/ethernet-with-static-ip-address

192 labview and open source solutions

Figure 182: Install Software tab in Linx
Target Configuration window.

diagram.
To create and deploy application to Raspberry PI, an empty project

needs to be created (File → New → Empty Project) or just at start
LabVIEW window, which is presented in figure 184.

Then new VI can be created, as showed in figure 183 with use of
LINX functions: open, write and close. We also need to define LINX
target in the project. For that, you need to click the right mouse button
the top of the project item in Project Explorer window, and select New
→ Targets and Devices. You can then choose New Target or Device, and
then select Raspberry PI and put the right IP address of Raspberry PI.
This is presented in figure 185.

Then you should connect to the newly created Device by clicking
the right mouse button on this device (with Raspberry icon) and select
Connect. This is depicted in figure 186. If necessary you can change the
IP address of Target Device using Properties menu item in right click
menu.

If connection was successful, you shouldn’t get any error window,
and bright green dot should be present in bottom right of raspberry
icon, which is visible in figure 187.

Now, it is important that vi in Project Explorer is located under
target device in this project tree. You may need to drag&drop the vi to
the target device. Then you can open the vi and run it. The you should
see deployment window, which shows the progress of deployment to

labview packages 193

Figure 183: An example of LED blink-
ing application created in LabVIEW us-
ing LINX library.

Figure 184: Blank project creation.

194 labview and open source solutions

Figure 185: Creation of Raspberry PI
Target device.

Figure 186: Make a connection to the tar-
get device in Project Explorer window.

labview packages 195

Figure 187: Status of the connection to
the target device. IP number and bright
green dot in bottom right part of rasp-
berry icon are visible.

the target device. This is shown in figure 188. If everything is OK,
then application should run, and if you connected LED with resistor
to the 37 pin of 40-pin I/O connector on Raspberry PI, then this LED
should blink in 50% duty cycle of 2 seconds period, according to the
block diagram in figure 183.

Figure 188: Deploying an application to
the target device.

Stroboscope controller application

Next let simply modify the blinking led application to be more profes-
sional tool and make it a stroboscope controller. In this modification
we just add controls to front panel, just to allow user to change the
time of ON and OFF states. For this purpose two dials were added,

196 labview and open source solutions

one which sets LED ON state duration and second which sets LED
OFF state duration. Front panel is visible in figure 189.

Figure 189: Front panel of stroboscope
controller application.Modified block diagram is presented in figure 190. Controls, added

to the front panel are connected to the wait functions, which are lo-
cated between LINX write functions on flat sequence.

After running this application, by pressing right arrow button in
menu, again we will see application deployment, presented in fig-
ure 191.

When application is running after deployment, user can interac-
tively change parameters of duration of light and dark parts in strobo-
scope cycle by rotating the dials on the front panel.

From this point, creation of any application with use of LINX library
should be possible for the reader, whether he will use Arduino Boards
or Raspberry PI. LINX library offers to easy use of different sensors
and actuators. Just review the tools palette.

labview packages 197

Figure 190: Block diagram of strobo-
scope controller application.

Figure 191: Deployment of stroboscope
controller application.

	Introduction
	Closed and open source approach

	Introduction to LabVIEW
	Basic data types in LabVIEW
	Array
	Clusters
	Loops and programming structures
	subVI
	Time control
	Charts
	Shift Register
	Control of Graphical User Interface
	Variables
	Write and read from files
	Error handling
	Design patterns
	Code documentation

	LabVIEW interfacing techniques
	Drivers
	VISA
	Ethernet communication

	Open source platforms
	Arduino boards
	Raspberry PI

	LabVIEW Packages
	LabVIEW Package Manager
	LabVIEW Interface for Arduino (LIFA)
	Digilent LINX library

