

Co-funded by the Erasmus+ Programme of the European Union

Seminar on measurement and data acquisition and 9th Balkan Open Competition In Software-designed Instrumentation

University of Belgrade, School of Electrical Engineering Innovation center, University of Belgrade, School of Electrical Engineering Center for the promotion of science 24th -28th of October 2019, Belgrade, Serbia

Erasmus+ KA2 strategic partnership Innovative Teaching Approaches in development of Software Designed Instrumentation and its application in real-time systems - ITASDI partners

- Faculty of Technical Sciences, University of Novi Sad, Serbia coordinator
- School of Electrical Engineering, University of Belgrade, Serbia
- Faculty of Electrical Engineering & Information Technologies, Skopje, Macedonia
- Tehničko veleučilište u Zagrebu, Zagreb University of Applied Sciences, Croatia
- Warsawa University of Technology, Faculty of Phisics, Poland

Project website: http://itasdi.uns.ac.rs/

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia 25/10/2019

Events

24th October

Precompetition activities

Computer Center, School of Electrical Engineering

Seminar on measurement and data acquisition

Ceremonial Hall of Belgrade University Rectorate

- 25th October
- 25-26th October
- 27th October
- 28th October

- Center for the promotion of science
- Individual Competition (LabVIEW)

Hackathon (Lego and Arduino)

Computer Center, School of Electrical Engineering

Postcompetition activities

Computer Center, School of Electrical Engineering

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia

25/10/2019

Events location

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia 2

25/10/2019

Registered participants

TOTAL: 87 participants

- 47 participants from non ITASDI Universities
 - 13 Industry representatives
 - 27 participants from other Serbian Universities, institutes or high schools
 - 7 foreign (non ITASDI) participants
- 40 participants from ITASDI Universities
- 18 foreign participants in total

Competitors

- 25 competitors for hackathon
- 20 competitors for individual competition

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia 25/10/2019

Do not miss to enjoy Belgrade city

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia

25/10/2019

Seminar on measurement and data acquisition and 9th Balkan Open Competition In Software-designed Instrumentation

University of Belgrade, School of Electrical Engineering Innovation center, University of Belgrade, School of Electrical Engineering

Center for the promotion of science

24th -28th of October 2019, Belgrade, Serbia

Milica Janković, Ass. Prof. University of Belgrade – School of Electrical Engineering

Welcome

	Day / Time	Event				
	Friday 25 th					
	09:00	Registration				
	10:00	"Welcome Speech"- opening of the Seminar on measurement and data acquisition systems University, faculty and project representatives				
	10:15	"Implementation of standards in metrology" Snežana Lilić, Institute of standardization of Serbia				
	10:35	"Software-designed vs. traditional instrumentation" Uglješa Jovanović, University of Niš – Faculty of Electronic Engineering				
Duct Determine V/ice use stor						

- Prof. Petar Marin, Vice-rector
- Prof. Milo Tomašević, Dean
- Academician Prof. Dejan Popović
- Ass. Prof. Boris Jakovljević ITASDI coordinator

Implementation of standards in metrology

Snežana Lilić Standardization manager Institute for standardization of Serbia Seminar on measurement and data acquisition 26 October 2019, Belgrade

ISS

Standardization

Standardization

Standardization

Metrology

Metrology is the science of measurement, embracing both experimental and theoretical determinations at any level of uncertainty in any field of science and technology.

14

Measuring Unit

A unit of measurement is a definite magnitude of a quantity, defined and adopted by convention or by law, that is used as a standard for measurement of the same kind of quantity.

Base Quantity	Unit	Symbol
Length	meter	M
Mass	kilogram	Kg
Time	second	s
Electric current	ampere	A
Thermodynamic temperature	kelvin	к
Amount of substance	mole	mol
Luminous intensity	candela	cd

Standards (Etalons)

A standard (or etalon) is an object, system, or experiment with a defined relationship to a unit of measurement of a physical quantity

Measuring Instruments

Calibration

Calibration is operation that, under specified conditions, in a first step, establishes a relation between the quantity values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties (of the calibrated instrument or secondary standard) and, in a second step, uses this information to establish a relation for obtaining a measurement result from an indication.

Measurement

Traceability

DMDM

DMDM - Directorate of Measures and Precious Metals OIML - Organization of Legal Metrology

Some national laboratories:

- ✓ for dimensional metrology
- ✓ for acoustics
- \checkmark for mass
- \checkmark for pressure
- ✓ for liquid volume
- ✓ for gas volume
- ✓ for time and frequency and time distribution
- ✓ for direct current voltage and direct current
- ✓ for temperatures
- ✓ relative humidity and heat
- ✓ for precious metals...

Directives

- ✓ NAWI Directive 2014/31/EU, Directive for non-automatic weighing instruments (sets down the essential requirements for weighing instruments such as retail scales, industrial scales and weighbridges)
- ✓ MID Directive 2014/32/EU, Measuring instruments Directive (covers these measuring instruments: water meters, gas meters and volume conversion devices, active electrical energy meters, heat meters, measuring systems for the continuous and dynamic measurement of quantities of liquids other than water, automatic weighing instruments, taximeters, material measures, dimensioning systems, exhaust gas analysers)

CISS

List of Serbian standards in the field of measuring instruments

SRPS EN 1359:2011 - Gas meters - Diaphragm gas meters SRPS EN 1434-1:2011 - Thermal energy meters - Part 1: General requirements SRPS EN 1434-2:2011 - Thermal energy meters - Part 2: Constructional requirements SRPS EN 1434-4:2011 - Thermal energy meters - Part 4: Pattern approval tests SRPS EN 12261:2011 - Gas meters - Turbine gas meters SRPS EN 12405-1:2011 - Gas meters - Conversion devices - Part 1: Volume conversion

M115 Hydraulic machinery and cryogenic techniques CEN/TC 237 Gas meters CEN/TC 176 Thermal energy meters CEN/TC 92 Water meters

List of Serbian standards in the field of measuring instruments

SRPS EN 50470 - Electricity metering equipment (a.c.) (3 standards) SRPS EN 62058 - Electricity metering equipment (a.c.) - Acceptance inspection (3 standards) SRPS EN 62059-32-1:2013 - Electricity metering equipment - Dependability - Part 32-1: Durability - Testing of the stability of metrological characteristics by applying elevated temperature (scope - specifies a method for testing the stability of metrological characteristics of electricity meters, by operating a test specimen at the upper limit of the specified operating range of temperature, voltage and current for an extended period)

N013 System aspects of electrical energy supply, electrical energy measurement and load control CLC/TC 13 Electrical energy measurement and control

Measurement for quality improvement

Relevant standards

✓ SRPS ISO/IEC 17025:2017 - General requirements for the competence of testing and
calibration laboratories
SRPS ISO/IEC 17020:2012 - Conformity assessment - Requirements for the
operation of various types of bodies performing inspection
✓ SPRS EN ISO/IEC 17065:2016 - Conformity assessment - Requirements for
bodies certifying products, processes and services
also
 SRPS ISO 9001:2015 – Quality management systems – Requirements
 SRPS ISO 14001:2015 - Environmental management systems - Requirements with guidance for use
✓ SRPS ISO 10012:2007 – Measurement management systems - Requirements
for measurement processes and measuring equipment

snezana.lilic@iss.rs

27

University of Niš, Faculty of Electronic Engineering in Niš

Software-designed vs. traditional instrumentation

Dr. Uglješa Jovanović

Belgrade, 25.10.2019

Instruments

- An instrument is a device designed to collect data from an environment or a system under test and to display information on the acquired data.
- It is designed to perform one or more specific tasks defined by a vendor.
- There are two types of instruments:
 - Analogue,
 - Digital.
- A measurement system includes several instruments with additional equipment designed to perform one or more measurements.

Instruments

- The rapid adoption of the PC in the last 20 years launched a revolution in measurement instrumentation.
- Ongoing shift from traditional hardware-based instrumentation systems to software-based systems that exploit the computing power, productivity, display, and connectivity capabilities of computers.
- Traditional instruments are scope, function generator, multimeter...

Block diagram of instrument

 The first two stages (sensor and signal conditioning) are shared by both techniques.

Benefits of software Instrumentation

- Enables integration of different types of instruments into a single instrument a PC.
- Provides easy instrument programming, reprogramming and upgrade of existing instruments.
- Allows utilization of existing PC resources: memory space, fast processing of big data, databases, Internet, e-mail, LAN...
- The use of instruments is made easier as they are based on the PC user interface.
- Reusability.

Applications of software instruments

- Simulation,
- Prototyping,
- Signal processing,
- Measurement,
- Remote measurement,
- Control.

Data acquisition hardware

• Specialized graphical languages – NI LabVIEW, Keysight VEE (parallel execution, code according to block diagram).

Single board computers

- With traditional instrumentation.
- With software instrumentation.

• Software instrumentation – Microcontroller forwards signal to PC.

• Designer must avoid overkill of this type of implementation as oppose to microcontroller.

• The gap between PC based and single board based software instrumentation is narrowing.

- Graphical user interface is built on MS Windows platform using NI LabVIEW.
- Highly accurate 3D teslameter.
- PCI-7354 Motion Controller Device.
- NI PCle-6321/NI 6212 DAQ.

Differences between both techniques

Traditional instrument	Software instrument
Functions defined by vendor	Functions defined by user
Pre-defined hardware components	User-defined measurement system
Closed architecture, limited connectivity	Open architecture, various connectivity options
Limited storage capacity	Unlimited storage capacity
Usually have small display screen	PC monitors have much better color depth and pixel resolution
Complex and expensive hardware	Complex hardware functionality implemented on software
Recalibration is required	Recalibration is not required
Bulky and stimulus specific	Compact and portable
High maintenance costs	Software minimizes maintenance costs
Better solution for simple operations	Better solution for complex operations

Co-funded by the Erasmus+ Programme of the European Union

Milica Janković, Ass. Prof.

Research group for Biomedical Instrumentation and Technologies (BMIT) University of Belgrade – School of Electrical Engineering

http://bmit.etf.bg.ac.rs/

Co-funded by the Erasmus+ Programme of the European Union

Milica Janković, Ass. Prof.

Research group for Biomedical Instrumentation and Technologies (BMIT) University of Belgrade – School of Electrical Engineering

http://bmit.etf.bg.ac.rs/

UB ITASDI outputs

"Seminar on measurement and data acquisition" is intended for all participants and stakeholders to promote the following intellectual outputs:

modified courses in Bachelor studies in Computer Engineering

- Theory of Robotics System
- Practicum of Measurement and Data Acquisition systems
- new book "Practicum of Measurement and Data Acquisition Systems".

Theory of Robotics System

- New lectures with code examples
 - 1. "Introduction to the course"
 - 2. "Introduction to ROS"
 - 3. "Development of mobile robots and concepts of work"
 - "Locomotion of mobile robots"
 - 5. "Kinematics of mobile robots"
 - 6. "Kinematic robot control with differential drive"
 - 7. "Dinamics and kinematics of robots with differential drive"

Theory of Robotics System

New lectures with code examples

- 8. "Perception | Sensors"
- 9. "Perception | Line Fitting"
 - 10. "Localization"
 - 11. "Localization Kalman Filter"
- 12. "Planning and navigation"
- 13. "Graph Search"

Practicum of Measurement and Data Acquisition systems

- New lectures with code examples (one integral PPT)
- Videos [in Serbian] <u>https://www.youtube.com/watch?v=1G_sXTiic70&list=PLBOIVFwYIUrJvA6Bf33dFwOtOPBF1m</u>

▶ **0:01 / 5:31**

Innovative Teaching Approaches in development of Software Designed Instrumentation and its application in real-time systems

Practicum of measurement and data acquisition systems

Video lectures [in Serbian]

Co-funded by the Erasmus+ Programme of the European Unio

Praktikum iz merno-akvizicionih sistema

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia

25/10/2019

Practicum of Measurement and Data Acquisition systems – new book [in Serbian] Milica Janković, Marko Barjaktarović, Marija Novičić, Petar Atanasijević

Deo I – Primena LabVIEW softvers	LEKCIJA 3 – STRUKTURE PODATAKA	LEKCIJA 4 – AKVIZICIJA I GENERISANJE SIGNALA	
merno-akvizicionim sistem	CILJ	Сц	
	3.1 NIZOVI	OPREMA.	
PREDGOVOR	Zadatak 3.1.1.	4.1 NI MAX testiranje NI A/D kartice	
	Zadatak 3.1.2.	4.1.1 Simuliranie NI DAO uređaja pomoću NI MAX softvera	
SOFTVERSKI DIZAJNIRANA INSTRUMENTAC	Zadatak 3.1.3 za samostalni rad	4.2 AKVIZICIJA PODATAKA	
LEKCIJA 1 – LABVIEW OKRUŽENJE	3.2 DINAMIČKI TIP PODATAKA	4.2.1 Akvizicija podataka primenom Express funkcija	
Спл	Zadatak 3.2.1.	4.2.2 Akvizicija podataka primenom DAOmx VIs	69
1 1 POKRETANIE I ABVIEW PROGRAMA	3.3 LOKALNE PROMENLJIVE – PRIMENA U INICIJALIZACIJI	4.3 APLIKACIJA ZA KONTINUALNU AKVIZICIJU ANALOGNIH KANALA	
1 2 KREIRANIE I DEBAGOVANIE PROGRAMA	Zadatak 3.3.1.	4.4 Korišćenje digitalnog ulaza	77
Zadatak 1.2.1		4.5 GENERISANIE PODATAKA POMOĆU DAOMX VIS	78
Zadatak 1.2.2.		4 6 GENERISANIE ZVUČNOG SIGNALA	81
		4.7 TRIGEROVANA KONTINUALNA AKVIZICIJA	82
LERCIJA Z - KORISCENJE STRUKTURA		4.8 PRIMER APLIKACUE S POVRATNOM SPREGOM	83
CILJ		Zadatak 4 8 1	84
2.1 WHILE PETLJA			
Zadatak 2.1.1.	,	LEKCIJA 5 – MODULARNOST	90
2.2 SEKVENCIJALNO PROGRAMIRANJE		Спл	
Zadatak 2.2.1.		Zadatak 5 1	90
2.3 KONTROLISANJE I MERENJE VREMENA		Zadatak 5 2	91
Zadatak 2.3.1.	2.17		
2 4 EOR DETLIA	3.4 PROGRAMSKO KONTROLISANJE OSOBINA KONTROLA/INDIK/	LEKCIJA 6 – PRIKAZ PODATAKA NA GRAFICIMA. UPIS U FAJL	95
Zadatak 2 4 1	Zadatak 3.4.1.	CILJ	
2.5 MEMORISANIE PROMENI IIVIH U PETI II	Zadalak 5.4.2 za samostalan raa	Zadatak 6.1	
Zadatak 2.5.1	3.3 KLASTERI	Zadatak 6 2	97
Zadatak 2.5.2.	Zadalak 3.3.1.	Zadatak 63	97
2.6 CASE STRUKTURA	2 6 STRUCTUO DEEDUGANIE KONTROLA (DIDIKATORA	Zadatak 6.4	99
Zadatak 2.6.1.	2.7 DROJEKTNU ZADACI	Zadatak 6 5	100
Zadatak 2.6.2.	7 adatak 2.7.1 za samostalni vad	Zadatak 6 6	100
2.7 EVENT STRUKTURA	Zadatak 2.7.2 za samostalni rad	Zadatak 6.7 – za samostalni rad	101
Zadatak 2.7.1.	Zaaaaa 5./.2. – za samostaini raa		
Seminar on measu	Jrement and data acavisition, 9th Balkan Open Competition i	In Sottware-designed Instrumentation, Belgrade, Serbig 25/10	/2019

Practicum of Measurement and Data Acquisition systems – new book [in Serbian]

Milica Janković, Marko Barjaktarović, Marija Novičić, Petar Atanasijević

CILJ	
Zadatak 7.1.	
Zadatak 7.2.	
Zadatak 7.3.	
Zadatak 7.4.	
Zadatak 7.5.	
Zadatak 7.6.	

2

114

LEKCIJA 9 – AKVIZICIJA SLIKE I OSNOVNE OBRADE SLIKE......126

Deo II – Primena Arduino platforme i Python softverskog alata u merno-akvizicionim sistemima

Cili.j	140
DPREMA	140
0.1 ARDUINO IDE OKRUŽENJE I ARDUINO UNO R3	140
0.2 DIGITALNI ULAZI I IZLAZI (DIGITAL I/O)	143
0.3 ANALOGNA AKVIZICIJA NAPONA I SERIJSKA KOMUNIKACIJA SA RAČUNAROJ	м 146
0.4 ANALOGNA AKVIZICIJA I PRIKAZIVANJE SIGNALA SA VIŠE SENZORA	149
0.5 IMPULSNO ŠIRINSKA MODULACIJA	151
Zadatak 10.5.1. – za samostalni rad	152
0.6 PRIMENA BIBLIOTEKA I PRIKAZIVANJE VREDNOSTI NA DISPLEJU	153
Zadatak 10.6.1 – za samostalni rad	154

Zadatak 8.1.	
Zadatak 8.2	
Zadatak 8.3.	
Zadatak 8 4	119

Cur

Zadatak 8.4.	
Zadatak 8.5.	
Zadatak 8.6.	
Zadatak 8.7.	

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia 25/10

25/10/2019

Practicum of Measurement and Data Acquisition systems – new book [in Serbian]

Milica Janković, Marko Barjaktarović, Marija Novičić, Petar Atanasijević

LEKCIJA 11 – SERIJS SENZORA I AKTUAT CILJ OPREMA 11.1 SLANJE PORUKA A Zadatak 11.1.1. – za 11.2 ULTRAZVUČNI SE Zadatak 11.2.1. – za	SKI PORT. KORIŠĆENJE PREKIDA. PRIMENA ORA. ARDUINO PLOČI PREKO SERIJSKOG PORTA <i>a samostalni rad</i> NZOR RASTOJANJA	LEKCIJA 12 – UVOD U P CILJ 12.1 PYTHON I PROGRAMSK 12.2 TIPOVI PODATAKA U P Zadatak 12.2.1. Logičke operacije Operacije nad brojevimu Zadatak 12.2.2. Kompleksni brojevi Zadatak 12.2.3. Liste Zadatak 12.2.4	YTHON PROGRAMSKI JEZIK	RFEJSA U <i>PYTHON-</i> U195
11.3 ARDUINO I ZVUČN Zadatak 11.3.1. – za 11.4 KORIŠĆENJE PREK Zadatak 11.4.1. – za	IA SIGNALIZACIJA 1 samostalni rad IDA 1 samostalni rad	Zadatak 12.2.5. Zadatak 12.2.6. 12.3 STRUKTURE I PETLJ IF struktura Zadatak 12.3.1. WHILE petlja Zadatak 12.3.2. FOR petlja Zadatak 12.3.3. 12.4 BIBLIOTEKE Zadatak 12.4.1. Numpy biblioteka Zadatak 12.4.2.	13.1 GRAFICKI INTERFEJS U PYTHON-U Zadatak 13.1.1. Zadatak 13.1.2. Zadatak 13.1.3.	
11.5 BIBLIOTEKA TIME 11.6 UPRAVLJANJE SEI Sem	ERÔNE ZA KONTROLU PRVOG HARDVERSKOG TAJMERA RVO MOTOROM	Maplotlib biblioteka. Zadatak 12.4.3 Zadatak 12.4.5 za s 12.5 FUNKCUE Zadatak 12.5.1 Zadatak 12.5.2. 12.6 RAD SA DATOTEKAI Rad sa tekstualnim de Zadatak 12.6.1 Zadatak 12.6.2. Rad sa .csv datotekama. Zadatak 12.6.3. Zadatak 12.6.4 za san Competition in Software	Zadatak 13.1.4. Zadatak 13.1.5. Zadatak 13.1.6 za samostalan rad. 193 193 nostalni rad. 194 e-designed Instrumentation, Belgrade. Serbig	

Practicum of Measurement and Data Acquisition systems – new book [in Serbian] Milica Janković, Marko Barjaktarović, Marija Novičić, Petar Atanasijević

	LEKCIJA 14 – SERIJSKA KOMUNIKACIJA SA ARDUINOM201	Na osnovu navedenih zapažanja, zadovoljstvo mi je da zaključim da rukopis "Praktikum iz merno-akvizicionih sistema", autora: dr Milice Janković, docenta, dr Marka Barjaktarovića, docenta, Marije Novičić, master inž., saradnika u nastavi i Petra Atanasijevića, master inž., asistenta iznupisva su čermalna i sužijeka udava Dravilniho z udžba da ostatenicijana i sužijeka udava presidenta
	CILJ	literaturi i predlažem Nastavno-naučnom veću da predmetni rukopis prihvati kao nastavnoj
	Оргема	materijal - udžbenik Elektrotehničkog fakulteta.
	14.1 SLANJE PODATAKA SA ARDUINA KA PYTHON OKRUŽENJU201	
	Zadatak 14.1.1	
	Zadatak 14.1.2	
	Zadatak 14.1.3	U Beogradu, 22.10.2019. Recenzent:
	14.2 Obrada izuzetaka	Mumana aunt- Doiobut
	Zadatak 14.2.1	dr Miniana Simiá Palaviá v prof
	Zadatak 14.2.2	di Minjana Shine-rejović, v. proi.
	Zadatak 14.2.3	"Практикум из мерно-аквизиционих система" је вредан рукопис, који ће свакако, као помоћни
	Zadatak 14.2.4	уџбеник, студентима бити драгоцен материјал за савладавање и увежбавање метода и начина
	14.3 SLANJE PODATAKA IZ PYTHON OKRUŽENJA KA ARDUINU	градње софтверски заснованих мерно-аквизиционих система на најразличитијим хардверским
	Zadatak 14.3.1	платформама.
	Zadatak 14.3.2	
1	Zadatak 14.3.3 - za samostalan rad	детальним прегледом рукописа, уочене су мање грешке и записи о њима, са коментарима,
/	14.4 KOMUNIKACIJA ARDUINO PLOČE SA RFID – RC522 MODULOM	оставлени у на мартинама рукописа предатот на рецензију. У сваком случају се ради о минорним исправкама које ни у ком случају не подразумевају потребу за било каквом кљушном
	Zadatak 14.4.1	дорадом или изменом рукописа. Рукопис задовољава све услове са техничког и педагошког
	Zadatak 14.4.2	аспекта и препоручује се за издавање.
	14.5 KREIRANJE GRAFIČKOG INTERFEJSA - MULTITHREADING	
	Zadatak 14.5.1	
	LITERATURA	Датум: 23.10.2019. Рецензент:
		Henry (ubit

Др Ненад Миљић, ванр. проф.

25/10/2019

UB ITASDI outputs – contribution to the joint book by all ITASDI partners

- Three chapters in joint book "Control, virtual instrumentation and signal processing use cases practicum" with the chapter title "Autonomous Mobile Robots – DaNI robot use case":
 - 1. "Autonomous Mobile Robots DaNI robot use case"
 - 2. "Machine Vision"
 - 3. "Acquisition systems for electrophysiology"

UB ITASDI outputs – contribution to video playlists

https://www.youtube.com/channel/UCd1oK49H8FFOmyFAjlKXdNw/playlists

UB ITASDI outputs – contribution to video playlists

https://www.youtube.com/watch?v=GCz4s1U3cN0&list=PLBOIVFwYIUrLWDgbft6ixQpk06uj1HmIV

UB ITASDI outputs – contribution to video playlists

📕 🕨 🔰 🚺 0:02 / 1<u>1:09</u>

Innovative Teaching Approaches in development of Software Designed Instrumentation and its application in real-time systems

Acquisition systems for electrophysiology

Introduction

Co-funded by the Erasmus+ Programme of the European Union

ITASDSI IO6 AES 06 Electromyography (EMG) - fatigue detection

ITASDSI IO6 AES 01 Introduction

ITASDSI IO6 AES 02 Basic data acquisition using simulated DAQ...

ITASDI IO6 AES 03 Electrode

Electrocardiography (ECG) - heart rat...

Acquisition systems for electrophysiology

ITASDI Project

ITASDI Project

impedance testing ITASDI Project

ITASDI IO6 AES 04

ITASDI Project

ITASDI Project - 1 / 6

X

11:10

12:11

19:49

19:03

~

≡+

https://www.youtube.com/watch?v=TTT_Ro9jwwU&list=PLBOIVFwYIUrIZDRtxrd2rLh72Kn1N0BrT

Co-funded by the Erasmus+ Programme of the European Union

Kosta Jovanović, Ass. Prof. ETF Robotics lab University of Belgrade – School of Electrical Engineering

ETF Robotics lab

Kosta Jovanović (age 33, Assistant Professor)

Research areas: physical human-robot interaction, variable impedance actuators, model-based robot control, robot modelling and simulation.

Vladimir Petrović (age 32, PhD student)

Research areas: artificial intelligence, virtual agents, virtual laboratories

Zaviša Gordić (age 30, PhD student)

Research areas: collision detection, robot callibration, dynamic parameter identification

Branko Lukic (age 29, PhD student)

Research areas: physical human-robot interaction, variable impedance actuators, robot control.

Nikola Knežević (age 26, PhD student)

Research areas: variable impedance actuators, machine learning in robotics.

Maja Trumić (age 26, PhD student)

Research areas: adaptive robot control, variable impedance actuator, impedance estimation.

Automation and robotics - stady state -

Charli's time Vs

Common production line today

 Robots are designed and manufactured to achieve high performances (repeatability/precision and velocity)! But, to work in a cage or human-free environment, fully deterministic

Automation and robotics - state-of-the-art -

- Robots are designed to be MORE safe and collaborative!
- Goal to bring the robot on the workbench with humans and save working space, while still comply with safety!
- Collaborative robots generation 1: sensor-based safety

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia

25/10/2019

Automation and robotics - next level -

- Robots are designed to be INHERENTLY safe and collaborative!
- Collaborative robots generation 2: actuator-based + sensor-based safety

Automation and robotics - next level -

- Robots are designed to be tailor-made for SMEs!
- Small batch production, easily reconfigurable, skill-free re-programed
- Horizon 2020 project ReconCell project experiment (coordinated by JSI):

In collaboration Ivamax

"Reconfigurable Assembly od Airport Signalization Lights using Collaborative Robots"

"New trends in automatization and robotics"

Email: kostaj@etf.rs

Kosta Jovanović, Asst. Prof. ETF Robotics lab University of Belgrade – School of Electrical Engineering

Co-funded by the Erasmus+ Programme of the European Union

Nikola Stanković

Continental Automotive d.o.o Novi Sad

Continental Corporation Overview 2018

- Since 1871 with headquarters in Hanover, Germany
- Sales of €44 billion in 2018
- 243,226 employees worldwide
- 544 locations in 60 countries & markets

Sales by division in %

Continental corporations Five Strong Divisions

Chassis & Safety	Powertrain	Interior	Tires	ContiTech
Vehicle Dynamics	Engine Systems	Instrumentation & Driver HMI	PLT, Original Equipment	Air Spring Systems
Hydraulic Brake Systems	Fuel & Exhaust Management	Infotainment & Connectivity	PLT, Repl. Business, EMEA	Benecke-Hornschuch Surface Group
Passive Safety & Sensorics	Hybrid Electric Vehicle	Intelligent Transportation Systems	PLT, Repl. Business, The Americas	Compounding Technology
Advanced Driver Assistance Systems	Sensors & Actuators	Body & Security	PLT, Repl. Business, Asia Pacific	Conveyor Belt Group
(ADAS)	Transmission	Commercial Vehicles & Aftermarket	Commercial Vehicle Tires	Elastomer Coatings
			Two Wheel Tires	- Industrial Fluid Solutions
				- Mobile Fluid Systems
				Power Transmission Group
PLT - Decongor and Light True				Vibration Control

Continental automotive in Novi Sad

- Situated in the city center with 6400 m², on 6 floors, enough for 550 people
- At the moment 350 engineers across 2 Business Units
- Setup of all engineering disciplines(SW, VV, EE, ME)
- Close collaboration with world leading OEMs

Why System testing in the automotive?

Are the systems complex?

Methodology

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia

25/10/2019

ECUs and Black box testing

Instrumentation and Driver HMI:

Body controller:

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia

25/10/2019
Simulation

- System Test Engineer simulates electrical signals, environments, disturbances and verifies if the captured output is valid
- Functional vs non-functional testing
 - Equipment: Test boxes
- Power supplies
- Oscilloscopes
- Signal generators
- NI test solutions STARS

Thermal chamber

NI Mini Stars

Generic Test Box

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia

What signals are under the hood?

Digital inputs and outputs

Analog Inputs – Voltage and resistive sensors

"Soft" skills

How people reacts differently to a single word. "Bug"

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia

Thank you

- Questions?
- Job/internship positions?
- Check our Infostud page or contact us directly: <u>career-novisad@continental-corporation.com</u>
- If you want to get in touch with me for any more questions: Nikola.Stankovic@continental-corporation.com

Dušan Vukašinović, Managing director NOFFZ-Forsteh Technologies

Company Overview

- Test and Measurement consultants and solution providers
- Highly available local technical assistance exactly according to specific needs through entire project lifecycle
 - Technical consultations and support,
 - Engineering assistance during project development and
 - Full turnkey solutions
- We are:
 - National Instruments Alliance partner and
 - Chroma ATE regional distributor

Scope of Services

- Test systems (R&D V&V, HIL, EOL production)
 - Consulting and feasibility studies
 - Test concepts and plans
 - Software architectures and test development
 - Test automation
 - Custom interface PCBs
 - Test fixtures and mass interconnections
 - Test system assembly
- Software tools development (frameworks, libraries, instrument drivers)
- Custom measurement systems

Forsteh is now part of NOFFZ group

DForsteh

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia 25/10/2019

NOFFZ

F S

G

ECHNOL

Embedded world

- Everything around us is turning to electronics
- Millions of pieces of PCBAs are manufactured daily around the globe
 - Automotive
 - Consumer electronics
 - Medical
 - Telecommunication
 - Etc.
- Quality control is critically important
 - Safety
 - Customer experience

Time matters

- We all know that size matters, but what is with time?
- Is 1s reduce of test time important?
- 1.000.000 pieces / year -> time saving 37 working days!
- Test time depends of DUT complexity, but also on test equipment
- Measurement time is (almost) always same
- So, where is challenge than?

Where is challenge?

- Most typical challenges on production floors
 - Communication -> devices config, results fetch
 - Multiplexing -> very intensive, (usually) time consuming communication
 - IN/OUT handling -> manual operation
- Critical importance
 - Latency (PCI vs others) test equipment, DB communication
 - Data types integer/float vs string
 - Way how are drivers implemented
 - DUT handling automation

Case study – Johnson Electric Nis

- Automotive product
- High quantity
- >99.7% uptime
- 24/7 operation
- Fully custom solution
- Sevral test time reduction improvements

National Instruments vs. Rigol DMM

National Instruments

- <u>PXIe (PCIe)</u> based DMM & Multiplexer
- Automatic handshake on PXI backplane
- Data in <u>numeric</u> format (float)
- 30 measurements = <u>1.5 seconds</u>
- ~4.000,00 EUR

Rigol

- <u>LXI or GPIB</u> based DMM <u>with</u> Multiplexer as module
- Automatic handshake in mainframe
- Data in **<u>string</u>** format
- 30 measurements = <u>5 seconds</u>
- ~2.000,00 EUR

Other time-consuming operations

- In-tester transport time
- Communication with ERP
 - fetching per SN status test can start only after all previous steps passed OK,
 - Test results announcement only after test results successfully stored to ERP
- Change-over time
- Maintenance time
- Debugging / troubleshooting (!)

Questions & Next steps

S

- We always have internship positions opened
- Currently 2 open positions for full time test engineer!

Dušan Vukašinović Managing director

NOFFZ-Forsteh Technologies doo

Tel: +381 11 3977 542 Mobil: +381 64 136 84 14 E-Mail: <u>dusan.vukasinovic@noffz.com</u>

Co-funded by the Erasmus+ Programme of the European Union

Marko Barjaktarović, Ass. Prof.

University of Belgrade – School of Electrical Engineering

DEEP LEARNING IN QUALTY CONTROL AND IDENTIFICATION

3D MEASUREMENTS

High speed laser scanners

Liquid lens

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia

Bin picking

ToF

HYPERSPECTRAL (MULTISPECTEAL) IMAGING

Recycling – 3 type of plastic

Food inspection

Agricultural inspection

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia

Co-funded by the Erasmus+ Programme of the European Union

Aleksandar Gogić, UNO-LUX NS, Belgrade

About company

- Founded in 1992
- National Instruments Silver Alliance partner for over 15 years
- Core activities:
 - Production
 - Research and development
 - Engineering
 - Education

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia 25/1

- 1. Inspection goals
 - Cost budget and the application benefits
 - System variations
 - Human operator profile
- 2. Inspection time
 - Type of cameras (analog or digital)
 - Image-acquisition hardware

3. Defects/Features

- 4. Lighting
- 5. Optics
 - Minimum resolution
 - Field of view (FOV)
 - Working distance
- 6. Image acquisition hardware
 - Analog or digital camera
 - Monochrome or a color camera
 - Linescan or area-scan camera

8. Integration of systems

- 9. Calibration and testing the inspection
 - Quantification of the camera, lens and lightning system
 - Saving images
 - Off-line software for testing inspection parameters

Defect	I	II	III
Repeatability[%]	100	99.8	99.9

10. Operator interface

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia

Statistika																			ŝ	- 0	×
Izbor artikla	ika					Od 01/0	1/19		14/06/19							🗍 Uputstv	10	Sacu	STOP uvaj izvestaj		
Datum	Artikal	Ukupan broj uzoraka	Ukupno dance	Losi dance	Ukupno kapisla	Losi kapisla	Ukupno lak	Losi I	Losilak- faza so	Losi lak- poliasniost	Losi lak- unutrasniost	Ukupno jednostruka	Losi iednostruka	Ukupno dvostruka	Losi dvostruka	Ukupno	Losi pecat	Ukupno	Losi ris	Ukupno Iosih	A
13\06\2019	110 ENB18	100000	100000	50	100000	50	100000	150	50	50	50	0	0	0	0	100000	50	100000	50	350	
14\06\2019	110 FNB18	100000	100000	50	100000	50	100000	150	50	50	50	0	0	0	0	100000	50	100000	50	350	
12\06\2019	810 18g	100000	100000	50	100000	50	100000	150	50	50	50	0	0	0	0	100000	50	100000	50	350	
13\06\2019	810 18g	100000	100000	50	100000	50	100000	150	50	50	50	0	0	0	0	100000	50	100000	50	350	
14\06\2019	810 18g	100000	100000	50	100000	50	100000	150	50	50	50	0	0	0	0	100000	50	100000	50	350	
Ukupna statistika	Ukupno Lo	i Ukupno	Losi	Ukupno	Losi	Losi lak-	Losi lak-	Losi lak-	Ukupno	Losi	i Ukupn	o Losi	Ukupno	Losi	Sacuvaj îzvest Ukupno	taj	Jkupno				
uzoraka	dance dan	ce kapisla	kapisla	lak	lak	faza	spoljasnjost	unutrasnjo	st jednostru	ka jednostr	ruka dvostru	ka dvostruka	a pecat	pecat	ris	ris	losih				
500000	500000 250	500000	250	500000	750	250	250	250	0	0	0	0	500000	250	500000	250	1750				

Questions?

www.unoluxns.com aleksandar@unoluxns.com

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia 25/10

New Trends in Electronics

Nenad Jovičić, Assoc. Prof.

University of Belgrade - School of Electrical Engineering

What is Electronics

Electronics is :

- It started as the part of physics concerned with the behaviour and movement of electrons in isolators, semiconductors or conductors.
- It continued as the branch of technology concerned with the design of devices and circuits used to build analog and later digital computers.
- Today it is the branch of engineering that develops support for the majority of other engineering areas.

Where is Electronics Today?

Integrate circuits and systems used in:

- <u>Computers from Android phone to supercomputer</u>,
- Industry from time relay to 6-DOF robot,
- Communications from wired phone to satellite Voyager probe,
- Automotive from electric scooter to combat plane,
- Consumer electronics from fridge to smart fridge,
- Measurement systems From multimeter to high end equipment

Where is Electronics Today?

Integrate circuits and systems used in:

- Computers from Android phone to supercomputer,
- Industry from time relay to 6-DOF robot,
- Communications from wired phone to satellite Voyager probe,
- Automotive from electric scooter to combat plane,
- Consumer electronics from fridge to smart fridge,
- Measurement systems From multimeter to high end equipment

Integrate circuits and systems used in:

- Computers from Android phone to supercomputer,
- Industry from time relay to 6-DOF robot,
- <u>Communications from wired phone to satellite</u> <u>Voyager probe</u>,
- Automotive from electric scooter to combat plane,
- Consumer electronics from fridge to smart fridge
- Measurement systems From multimeter to high end equipment

Integrate circuits and systems used in:

- Computers from Android phone to supercomputer,
- Industry from time relay to 6-DOF robot,
- Communications from wired phone to satellite Voyager probe,
- Automotive from electric scooter to combat plane,
- Consumer electronics from fridge to smart fridge,
- Measurement systems From multimeter to high end equipment

Integrate circuits and systems used in:

- Computers from Android phone to supercomputer,
- Industry from time relay to 6-DOF robot,
- Communications from wired phone to satellite Voyager probe,
- Automotive from electric scooter to combat plane,
- Consumer electronics from fridge to smart fridge
- Measurement systems From multimeter to high end equipment

Integrate circuits and systems used in:

- Computers from Android phone to supercomputer,
- Industry from time relay to 6-DOF robot,
- Communications from wired phone to satellite Voyager probe,
- Automotive from electric scooter to combat plane,
- Consumer electronics from fridge to smart fridge,
- Measurement systems From multimeter to high end equipment

Electronics IS the main enabler for the future of:

- Internet of Things (IoT),
- Artificial Intelligence (AI),
- Machine vision,
- Virtual and augmented reality (VR),
- Autonomous vehicles,
- 5G, UWB and other wireless technologies,
- Smart grids, smart factiories, smart cities, smart everything,

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia

25/10/2019

Electronics IS the main enabler for the future of:

- Internet of Things (IoT),
- <u>Artificial Intelligence (AI),</u>
- Machine vision,
- Virtual and augmented reality (VR),
- Autonomous vehicles,
- 5G, UWB and other wireless technologies,
- Smart grids, smart factiories, smart cities, smart everything,

Electronics IS the main enabler for the future of:

- Internet of Things (IoT),
- Artificial Intelligence (AI),
- Machine vision,
- Virtual and augmented reality (VR),
- Autonomous vehicles,
- 5G, UWB and other wireless technologies,
- Smart grids, smart factiories, smart cities, smart everything,

Electronics IS the main enabler for the future of:

- Internet of Things (IoT),
- Artificial Intelligence (AI),
- Machine vision,
- Virtual and augmented reality (VR),
- Autonomous vehicles,
- 5G, UWB and other wireless technologies,
- Smart grids, smart factiories, smart cities, smart everything,

Electronics IS the main enabler for the future of:

- Internet of Things (IoT),
- Artificial Intelligence (AI),
- Machine vision,
- Virtual and augmented reality (VR),
- <u>Autonomous vehicles,</u>
- 5G, UWB and other wireless technologies,
- Smart grids, smart factiories, smart cities, smart everything,

Electronics IS the main enabler for the future of:

- Internet of Things (IoT),
- Artificial Intelligence (AI),
- Machine vision,
- Virtual and augmented reality (VR),
- Autonomous vehicles,
- 5G, UWB and other wireless technologies,
- Smart grids, smart factiories, smart cities, smart everything,

Electronics IS the main enabler for the future of:

- Internet of Things (IoT),
- Artificial Intelligence (AI),
- Machine vision,
- Virtual and augmented reality (VR),
- Autonomous vehicles,
- 5G, UWB and other wireless technologies,
- Smart grids, smart factiories, smart cities, smart everything,

Electronics IS the main enabler for the future of:

- Internet of Things (IoT),
- Artificial Intelligence (AI),
- Machine vision,
- Virtual and augmented reality (VR),
- Autonomous vehicles,
- 5G, UWB and other wireless technologies,
- Smart grids, smart factiories, smart cities, smart everything,
- And finally advanced measurement systems!!! ©

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia

LabVIEW

25/10/2019

Co-funded by the Erasmus+ Programme of the European Union

Ivan Pružljanin, Novelic, Belgrade

About Novelic

- NOVELIC is a B2B High-Tech Solutions Company for analogue & RF & mmwave IC, SoC & FPGA, Embedded HW&SW and Signal Processing design.
- The NOVELIC mission is to create premium value for our customers and offer high-tech, innovative and affordable solutions.
- Our vision is to be the customer's first choice company for mm-Wave short range radar sensor modules in the years to come.

Applications of mm-Wave radar

- Parking Sensor
- Blind Spot Detection
- Industrial Safety
- Breathing and Heartbeat Sensor

The "problem"

- VCO, PLL
- Price, area...
- Possible solution?

DAC

- Using Input Capture Timer (exists on microcontroller) to measure frequency
- Adjust the frequency using DAC (does not exist on microcontroller that we used, needs to be purchased additionally)
- Is there an even cheaper solution?

PWM 100 kHZ

DAC voltage=A volts*duty cycle

PWM spectrum

Choosing the cutoff frequency

Limitations of this DAC

- Slow
- Ripple
- A volts depends on logichigh levels (Voltage regulator, battery)

Improvement

- Increase the PWM frequency
- Find the best Low-pass cutoff to satisfy ripple and speed
- Higher order filter

The final slide

- Are there any questions?
- NOVELIC OFFERS INTERNSHIP POSITION IN THE FOLLOWING AREAS:
 - Analog / Mixed Signal IC Design
 - DSP for IoT Radar Sensors
 - Embedded Systems Design
 - Embedded Systems Design, position in Niš
 - FPGA Design
- Apply for the internship, with a one-page CV, and a Cover letter via: internship@novelic.com

Co-funded by the Erasmus+ Programme of the European Union

Aleksandar Popović, Elsys Eastern Europe, Belgrade

Numerous Fields

Elsys and Avisto Eastern Europe

CREATED 2004/2007

Advans Group companies

LOCATIONS

Europe, Serbia, Belgrade and Novi Sad

KEY FIGURES

- Staff: 220 engineers
- Technical Open Space 3000m2
- 7YoE
- Certifications ISO9001, ISO14001, ISO27001, SR10
- Turnover 11M€

CUSTOMER DESIGN CENTRES

TI, INTEL, STM, MAXIM, SCHNEIDER, NOKIA

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia

25/10/2019

Post-silicon Validation and Characterization

 Post-silicon validation is the last step in the development of a semiconductor integrated circuit.

Project Flow

- Requirements capture
- Validation Plan Development
- Test Environment Development
 - Test PCB development
 - Instruments setup
 - Thermal chamber setup
 - Other electronic equipment setup
- Tests development (control of instruments, data acquisition, storage and analysis)
- Test report generation

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia

25/10/2019

Too many instruments and resource names

- For clear and clean code Function Global Variables were used
- Functional global variable is a non-reentrant VI that uses one iteration while loop with uninitialized shift registers to hold global data.

The Code looks clear

Scripts instead of Hard Coded

- Flexibility changing the scripts instead of changing the code
- Loading files, parsing data and automatic actions in the application

[Test1]

Name=Input Resistance Number=101 Perform_Test=True Number_Of_Parameters=2 Parameter_1_Name=T [deg C] Parameter_1_Log=True Parameter_1_Number_of_Values=4 Parameter_1_Value_1=-40 Parameter_1_Value_2=27 Parameter_1_Value_3=95 Parameter_1_Value_4=125 Parameter_2_Name=VCC [V] Parameter_2_Log=True Parameter_2_Number_of_Values=1 Parameter_2_Value_1=3.3 Using Tables=False Noise=False Single_Write_Parameters_Number=5 Single_Write_Parameters_1=Measured Temp [deg C] Single_Write_Parameters_2=Measured VCC [V] Single_Write_Parameters_3=Icc [A] Single_Write_Parameters_4=Rinp [Ohm]

-- Coil Test -- Straight segment REPEAT i 6 mcc write16 #i 1004 0 2 DELAY 100 mcc write16 #i 2106 1 1000 DELAY 100 mcc write16 #i 2106 2 -1000 DELAY 100 mcc write16 #i 2106 3 1000 DELAY 100 mcc write16 #i 2000 0 \$7 DELAY 100 mcc read16 #i 2108 1 DELAY 100 --TEST Voltage of coil 1 CHK MIN 80 MAX 120 ERROR VOLTAGE OF COIL 1 VALUE OUT OF RANGE mcc read16 #i 2108 2 DELAY 100 --TEST Voltage of coil 2 CHK MIN 65416 MAX 65456 ERROR VOLTAGE OF COIL 2 VALUE OUT OF RANGE mcc read16 #i 2108 3 DELAY 100 --TEST Voltage of coil 3 CHK MIN 80 MAX 120 ERROR VOLTAGE OF COIL 3 VALUE OUT OF RANGE DELAY 100 mcc write16 #i 2000 0 0 DELAY 100 END REPEAT

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia

25/10/2019

Custom report

- The customer wanted the data to be presented with Boxplots
- Boxplot displays variation in samples of a statistical population
- Found a solution on ni site and modified it for our purposes

Modifying LabVIEW Toolkit

- NI LabVIEW Jitter Analysis Toolkit analysis for standard NRZ signal
- Modified existing functions for PAM-8 multilevel eye diagram

Conclusions, Questions and Contact Details

- Competition's site: <u>http://blsc.etf.rs/</u>
- Elsys Eastern Europe: 3 or 4 internships during the year
- Scholarship (deadline for application is 10.11.2019.)
- Presenter's e-mail: aleksandar.popovic@elsys-eastern.com

Co-funded by the Erasmus+ Programme of the European Union

Milica Janković, Ass. Prof.

Research group for Biomedical Instrumentation and Technologies (BMIT)

University of Belgrade – School of Electrical Engineering

http://bmit.etf.bg.ac.rs/

Biopotentials?

- Many organs (heart, brain, muscles...) produce electrical potentials, so called "biopotentials"
- "Action potential" is the biopotential of the cell membrane when the cell is excited
- Electrophysiological signals represent the sum of action potentials of individual cells

25/10/2019

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia

Today and future

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia

Today and future

In cooperation with Pylosophy faculty, University of Belgrade, Psychology Department

- Parameters immediately available
- Signals available on cloud
- Artificial intelligence

- Wearable technology
- New biosensors
 - (biomaterials, dry sensors)
- Non-contact sensing
- Multimodality

NovelIC and ETF, HUDES project - Doppler-radar real-time monitoring using deep learning approach – comparison with reference Smartex system

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia

"New trends in biomedical data acquisition"

Milica Janković, Ass. Prof.

Research group for Biomedical Instrumentation and Technologies (BMIT) University of Belgrade – School of Electrical Engineering http://bmit.etf.bg.ac.rs/ e-mail: piperski@etf.rs

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia

Can you see it?

The headphones are measuring my brain signals Bogdan Mijović, mBrainTrain, Belgrade

mBrainTrain

- Active since 2014.
- The company is focused on developing technology for mobile brain recordings in real-life settings

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia

mBrainTrain

- Our products are present in over 30 countries on 5 continents
- Smarting has helped generating more than a 100 scientific publications
- We actively collaborate with more than 60 scientific labs around the world

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia 25/10/2019

Measuring Mental Workload

over **80%**

A huge percentage of accidents are due to human error (80% of air crashes, 94% of car accidents, more than 99% of accidents in factories)

P

It is due to mental overload, drop in focus and attention, tiredness

We are not able to track the mental state of the worker, detect the mental fatigue or mind wander and prevent it

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Softwaredesigned Instrumentation, Belgrade, Serbia

NASA Task Load Index

Hart and Staveland's NASA Task Load Index (TLX) method assesses work load on five 7-point scales. Increments of high, medium and low estimates for each point result in 21 gradations on the scales.

Name	Task		Oute	
Mental Demand	Ho	w montally don	handing wa	is the task?
Very Low				Very High
Physical Demand	How physica	ally domanding	was the ta	isk?
Vory Low				Very High
Temporal Demand	How hurried	or rushed was	the pace of	of the task?
Very Low				Vary High
Performance	How succes you were as	sful were you i ked to do?	n accompli	shing what
Parfact				Failuro
Effort	How hard di your level of	d you have to i performance?	work to ac	complish
Very Low				Very High
Frustration	How insecur and annoyed	e, discourage d wereyou?	1, irritatod,	stressed,
Very Low	111			Very High

THE EXPERIMENT

- -(1) Acquisition computer
- (2) Task computer
- (3) EEG cap (smartfones)
- (4) Ethernet cable
- (5) Bluetooth modul
- (6) Smarting amp

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia

Future Work

Develop algorithms for automatic detection of mental fatigue based on mental workload

Investigate how different changes in the work routine affect brain dynamics

•

Investigate ways to react on mental fatigue in order to optimize for worker performance

Work further on optimizing the recording equipment to better fit the workplace of interest.

Develop passive BCI, a neuroadaptive technology capable od adjusting the automation level in respect to worker's mental state

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Softwaredesigned Instrumentation, Belgrade, Serbia

Thanks!

Bogdan Mijović, mBrainTrain bogdan@mbraintrain.com

Seminar on measurement and data acquisition, 9th Balkan Open Competition in Software-designed Instrumentation, Belgrade, Serbia 25/10/2019