CONCEPT AND ACREDITATION OF NEW MASTER LEVEL
COURSE SOFTWARE-DEFINED INSTRUMENTATION

The European Commission’s support for the production of this publication does not constitute an endor-
sement of the contents, which reflect the views only of the authors, and the Commission cannot be held
responsible for any use which may be made of the information contained therein.

Co-funded by the
- Erasmus+ Programme
Itasdi of the European Union

Co-funded by the o
Erasmus+ Programme £ x
of the European Union Eat

Itasdi
New master level course: Software-defined instrumentation

1. Introduction

One of the challenges that engineers face nowadays is the increased complexity of the devices they
need to design and test. As devices continue to become more complex and include more disparate
technologies, test systems must become more flexible. The only way to accomplish this is through software-
defined instrumentation, which helps engineers develop scalable, high-performance test systems. Next-
generation test systems must be flexible enough to support the wide variety of tests that differ among
convergent products and they must be scalable enough to accommodate a larger number of tests as new
measurement functionality is required. Software-defined instrumentation is the essential differentiator for
meeting this test challenge. The mainstream adoption of software-defined modular instruments in automated
validation and production test applications is confirmation of this trend.

The functionality of a modular instrument is characterized through user-defined software residing on
the host personal computer (PC) instead of on the instrument. The role of software in modular
instrumentation cannot be overstated. With a software-defined modular instrumentation system, engineers
can quickly adapt to changing test needs. Through software, they can program a modular instrumentation
system to function as one user-defined instrument using built-in shared clocks and triggers. On the other
hand, software-defined instrumentation hasn’t been deeply threated and systematically organized in literature
so far and students are lacking of knowledge in this field. This course aims to fill this gap by introducing a
new master level course into student’s curriculum.

2. Course description

Software-defined instrumentation aims to be a new University course at ss. Cyril and Methodius
University of Skopje, Faculty of electrical engineering and information technologies in the next master
program accreditation cycle in 2021. The students will be able to participate in this course in their first
semester of master studies at the study program Metrology and quality management. The usual number of
participants is around 10 students per year dealing mainly with electronics and automation. Prior this
academic course, students gain basic knowledge of measurement science and technology and they are skilled
to understand and interpret the concept of uncertainty in measurements.

3. Identification of opportunities

Usually instrumentation manufacturers provide specific functions to given architecture and fixed
interfaces for measuring devices, and thus limit the application domain of these devices. In actual use much
time is required for adjusting the measuring range and for storing and documenting the results. The advent of
microprocessors in the measurement and instrumentation fields produced rapid modifications of measuring
device technology, soon followed by the appearance of computer-based software-defined measurement
systems. Using the design software or similar software inside the instruments allows designers to create
software-defined instrument applications and also offers many benefits in terms of a design and verification
flow.

Typically, a design and verification flow begins with a solution used to put together the system and
circuit designs. At this stage of the design flow, test equipment is not yet involved since it is still a design-
only phase. Simulation signal sources and signal measurements are used in the software to begin designing
the system and circuits. For emerging technologies, signal sources and measurements could be available as
predefined simulation test benches, which are pre-configured to perform key simulation measurements.
When the design phase is complete and device under test (DUT) hardware returns from fabrication, early
research and development (R&D) verification testing can begin. If off-the-shelf instrumentation solutions are
not readily available for the given signal format, then the software can be combined with test instrumentation
to provide an early R&D test solution. In such case, it may also be

Co-funded by the o
Erasmus+ Programme £ x
of the European Union Eat

Itasdi
useful to combine the software with test instrumentation to create custom R&D test solutions. There have
been numerous publications written on concepts like Connected Solutions to extend the instrumentation’s
functionality for R&D applications [1-6]. Most of the work-to-date has been implemented in the form of an
external PC (such as a laptop) connected to the test instrumentation to perform the signal generation and
signal analysis. However, once the Connected Solution has been created, the designer might take this a step
further by installing the design software inside the instrument solution. This is somewhat dependent on the
instrument platform, and whether it can support installing and running the design software or similar
software. After the software is installed on the instrument, it might also be configured to run the
measurement automatically by pressing a button on the instrument’s front panel or by pressing a button in the
instrument’s application software. This effectively creates a software-defined instrument, using the design
software to define the signal source and measurement.

From a technical viewpoint, the idea of a “software-defined instrument” is not a new one. For

example, (in the early 2000°s) three critical factors drove the transition of the modern signal analyzer from a
predominantly analog instrument to a digital one. First, the increasing integration of multiple radios onto
singular products (such as the smartphone) drove the requirement for radio frequency (RF) signal analyzers
to test every wireless standard imaginable. Second, the continued evolution of existing standards drove the
requirement for RF signal analyzers to be more easily upgradable. Finally, continued innovation in the
embedded processing world introduced a new generation of microprocessors and field programmable gate
arrays (FPGAs) that were capable of handling the signal processing challenges of RF instruments.
In the software-defined RF instrument, the core measurement functions are performed with a CPU instead of
using traditional approaches. One of the clear benefits of this architecture is that software-defined
instruments are able to support composite measurements which are performed in parallel. Even today, the
software-defined instrument has many benefits over the traditional instrument approach. First, since
measurements are performed in software, the instrument can be easily upgraded to analyze new signal types
or signal formats. However, perhaps one of the most understated benefits of the software-defined instrument
is the advantages in measurement speed over the traditional approaches to instrumentation. As we look to the
future of software-defined instrumentation, two critical trends that will continue to drive innovation in
measurement science are the needs for 1) greater signal processing capabilities and 2) productive
measurement abstraction. Thus, over the next decade, the term “software-defined instrument” will continue
to take on new meaning as engineers use software as the primary graphical system tool used to configure
their instrumentation.

The course Software-defined instrumentation will be covered by a large teaching material which
demands a good knowledge of other fields in electrical engineering (electrical measurements,
instrumentation, communication techniques, programming, etc.). Thereby, students will be obliged to
analyze a lot of different engineering approaches and solutions. Such efforts are more effective if supported
by practical implementations and a possibility for experimentation work. However, having in mind that the
laboratory exercises are limited in time and resources, such approach is often a challenge. Our experience
over the years shows that students are lacking of user friendly interactive tools to support the motivation of
autonomous experimentation work at home. This would increase the effective time used to
design/test/implement a given solution and increase the quality of learning, especially when it comes to
practical implementations.

On the other hand the students at Faculty of electrical engineering and information technologies (but
also at another Universities) are familiar with the concept of Virtual Instrumentation as a part of the
LabVIEW Academy program in the lower semesters. The availability of such tools and knowledge can
compensate for the weaknesses stated above. Namely, the virtual instrumentation (VI) can be used to
implement VI experimentation package in the area of Software-defined instrumentation and thereby
support the autonomous experimentation work at home.

Co-funded by the o
Erasmus+ Programme £ x
of the European Union Eat

Itasdi

Another motivation to implement the Virtual Instrumentation concept is the student’s satisfaction to

use the previous gained knowledge in reality, and to exploit the availability of the licensed LabVIEW

Academy software package. Besides the improvements by the innovation of the education process, this

application also aims to provide a course program improvement by updating it with the state-of-the-art

approaches in the field of software-defined instrumentation. The foreseen program improvements are
elaborated in chapter 5.

4. Proposed course contents
The course Software-defined instrumentation is conceived with the following main topics (at this stage):
* Software-defined instrumentation architecture
* Sensor interfaces
* Programmable instrumentation
* Database interface
* Processing module
* Presentation and control
* Functional integration
* Distributed instrumentation
* Private networks
* Internet
* Cellular networks
* Distributed integration
* Tools and platforms
* Hardware platforms and operating systems
* Development environments
* Measurement uncertainty in software-defined instrumentation
* Applications of software-defined instrumentation

5. Implementation of a virtual instrumentation experimentation package and

laboratory exercises

The virtual instrumentation experimentation package is conceived to contain eight virtual
instruments that cover the majority of the course program topics. The virtual instruments will be license free
(education license) and hardware independent executable programs intended for individual experimental
work in home environment. They will be divided into four main groups: programmable instrumentation;
communication interfaces; distributed instrumentation; and measurement uncertainty.

With the laboratory exercises, the students are in the position to perform a practical measurements
and experimentation, ant thereby test the theoretical material covered with the course. They are often
considered as a critical part of the education process, where students are trained to apply the gained
theoretical knowledge in reality. It is therefore expected to develop new laboratory exercises with all aspects
highlighted in the previous sections. Moreover, the software-defined instrumentation is subject of continual
technological improvement followed by a new communication/interfacing techniques. In that regard, it is
planned to design laboratory exercise models in the following areas: programmable instrumentation, virtual
instrumentation, distance laboratory, communication interfaces, signal processing, data logging, and
measurement uncertainty.

Itasdi

Co-funded by the o
Erasmus+ Programme £ x
of the European Union Eat

6. Oficial acreditation document

Mpunor 6p. 3 MpeameTHa nporpaMa o BTOp UMKNYC Ha CTYAWUK
1. Hacnos Ha HacTaBHWOT npegmMeT CocpTBepcku-aedpMHUpaHa U BUPTyeNnHa UHCTPYMeHTauuja
2. Kog ®EINTO3008
3. CTyaycka nporpama MeTponoruja u MeHauMeHT Ha ksanuTeT (MMK)
4 OpraHusaTop Ha cTyauckaTa nporpama PakynTeT 3a enekTpoTeXHMKA 1 UHOPMALMCKI TEXHONOTAU
(eOMHWUA, OOHOCHO MHCTUTYT, KaTedpa,
ofgen)
3. CTeneH (Np., BTOP, TPET LMKIYC) Brop umknyc
6. | Akagemcka roguHa/cemectap V9 7. | bpojHaEKTC 6
KpeguTu
8. HacTasHuk BoH. npodp. o-p Kusko KokonaHcku, [ou. g-p Tomucnas LUymuHocku
9. Mpenycnos 3a sanuwlyBarke Ha NnpeamMeToT Hema
10. | Uenn Ha npegmeTHaTa nporpama (KOMNeTeHLUMHN):
Co ycnellHo NonoxyBake Ha 0Boj NpegMeT, KaHAMAATOT ja coBNagyBa codTBepcku-aethuHupaHaTa BupTyenHa
WHCTpYMEHTaLMja 1 KoMM)yTepckin MpexHU1 cuctemun. Ce cTekHyBaaT 3Haera 3a nporpamabunHa UHCTpYMeHTauuja,
aKBM3WLMja Ha NoAaToLM, BUPTYenHa MHCTpYMeHTaLma M KOMM)YTEPCKN MPEXHU CUCTEMMU.
11. | CogpxuHa Ha NnpegMeTHaTa nporpamMa:
Boeepn Bo codhTBEPCKU-AEDUHUPaHa UHCTPYMEHTaLM]a U HUBHK apxuTekTypH. OCHOBHM KOMYHUKALUCKM UHTEpdejcH Ha
cothTBepcKU-AehUHIpaHaTa MHCTPYMeHTaLUWa W HYBHA NpuMeHa. HanpeaHu acnekTu Ha BUPTYernHa MHCTpyMeHTalmja.
MpodhechoHanHK apxXUTEKTYpU Ha BUPTYenHaTa MHCTpyMeHTaumja. JueTpubyvpasn Meperba, TeneMeHTpuja U npeHoc
Ha nogatoun. Cnopegba Ha SDN u TpaguUMOHarnbu mMpexu, npegHocTi u uenn Ha SDN MmpexuTe, apxuTekTypa Ha
SDN mpexute. OpenFlow npotokon, npegHocTH U uenu Ha NFV mpexute, apxutektypa Ha NFV mpexute, cnopeaba
Ha SDN 1 NFV, SDN & NFV eo nametHu rpagosu (Smart Cities) n nameTHun yenyrit. [aMeTHW ypeau, NoBp3aHu ypeau,
loT ypeau, naMeTHa Mpexa, NameTHK Mepuna, naMmeTHW arpagu (Smart Building), nameTHW cucTeMK 3a TpaHCNOPT.
Mpumepw 3a npumeHa Ha SDN Bo 5G 1 caTennTCKU MPEXK.
12. | MeToau Ha y4erbe:
13. | BkyneH pacnonoxmnue ¢oHa Ha Bpeme 180
14. | Pacnpepenfa Ha pacnonoxn1eoTo Bpeme 3+0+0+3
15. | ®opmu Ha HacTaBHUTE aKTMBHOCTH 15.1 MNpepasatba-TeopeTCka HacTaea 45 yacosw
Bexbu (nabopatopucku, /
15.2 ayauTOPUCKKW), CEMMHapH, TUMCKa
paboTa
16. | Opyrv chopmu Ha aKTMBHOCTH 16.1 MpoeKTHU 3aga4n 45 yacosm
16.2 CamocTojHu 3agagym /
16.3 JomaluHo ydere 90 vacoem
17. | HauvH Ha oLeHyBame
171 TecToOBM 30 6ogoBw
17.2 CemuHapcka paboTa/npoekT (Npe3eHTaLmja: NCMeHa U ycHa) 50 Gogosm
173 AKTWBHOCT U1 y4ecTBO 20 6ogosm
18. | Kputepuymu 3a oleHyBare (bogosu/oLeHKa) ao 50 boga 5 (net) (F)
o 51 go 60 6oga 6 (wect) (E)
op 61 no 70 bopa 7 (cenym) (D)
oa 71 po 80 Boga 8 (ocym) (C)
on 81 mo 90 boga 9 (geser) (B)
oA 91 go 100 Goga 10 (gecer) (A)
19. | YcnoB 3a noTnMc v nonarake Ha 3aBpLIEH UCTIUT 60% ycnex o cUTE NPEAUCTIUTHN aKTUBHOCTU
20. | Ja3uk Ha Koj ce u3BefdyBa HacTapaTa MakenoHCKW/ AHIIMGKK
21. | MeToq Ha cneflete Ha KBanWTeTOT Ha HacTaBaTa CamoeBanyauuja

Co-funded by the
Erasmus+ Programme
of the European Union

* ¥
- *

*
* e *

Itasdi
INurepatypa
3a gomxkutenHa Jlutepatypa
Pep. AeToOp Hacnos W3naBad [oomHa
5poj
1. G. Johnson, LabVIEW Graphical Programming Mc Graw-Hill 2006
221. R. Jennings
2. Mike Tooley PC Based Instrumentation and Elsevier, 3 Ed. 2005
Control
22, 3 National Instruments LabVIEW Core 1, 2, 3 - Course National Instruments 2009
Corp. Manual Corp.
HononuutenHa llutepatypa
Pen. ABTOp Hacnos WspaBad loguHa
222. ?p‘”
2.
3.

7. Refferences

[1] T. Helaly, N. Adnani “A fourth category of software-defined instrumentation for wireless test”, IEEE

Instrumentation & Measurement Magazine, Vol. 20, Iss. 4, Aug. 2017
[2] G. Jue and S. Ferguson, “RF And Digital Tests Unite Against BER,” Wireless Systems Design Magazine, Nov. 2004

[3] “Connected Simulation and Test Solutions Using the Advanced Design System,” Agilent Technologies, Application

Note Number 1394
[4] G. Jue, “3GPP W-CDMA Systems: Design and Test,” IEEE Microwave Magazine, June 2002, pp 56-64
[5] B. Zarlingo, K. Kalbasi and G. Jue, “Flexible Digital Demodulation/Integrating Simulation Software with

Measurement Hardware,” IEEE Autotestcon 2002

[6] D. Leiss, “Combined Virtual and Physical Hardware Performance Analysis,” IEEE Autotestcon 2002
Dr. Zivko Kokolanski, Associate Professor at FEEIT

